Phase Transformation and Microstructure Evolution in Stainless Steels

Message from the Guest Editor

The current Special Issue is focused on research results involving one or a combination of solid-state phase transformations in stainless steels, irrespective of the nature of transformation and including aging and precipitation reactions and atomic redistribution phenomena. Of particular interest is the deformation-induced microstructure evolution of fully or partially austenitic stainless steels. The phase transformations and microstructure evolutions may have occurred under laboratory conditions or during production or service. Ideally, the phase transformations and microstructural evolutions are not considered in isolation but are correlated with the properties and performance. Submissions making use of theoretical approaches and simulation tools, for instance, thermodynamic and kinetic calculations, or those contributing to the critical assessment of such databases are highly welcome.

With your contributions, this Special Issue will offer solutions to some of the existing problems with stainless steels and promote the state-of-the-art on stainless steels.
Message from the Editor-in-Chief

Materials (ISSN 1996-1944) was launched in 2008. The journal covers twenty comprehensive topics: biomaterials, energy materials, advanced composites, structure analysis and characterization, porous materials, manufacturing processes and systems, advanced nanomaterials, smart materials, thin films and interfaces, catalytic materials and carbon materials, materials chemistry, materials physics, optics and photonics, corrosion and materials degradation, construction and building materials, materials simulation and design, electronic materials, advanced and functional ceramics, metals and alloys, general. The distinguished and dedicated editorial board and our strict peer-review process ensure the highest degree of scientific rigor and review of all published articles. *Materials* provides a unique opportunity to contribute high quality articles and to take advantage of its large readership.

Author Benefits

Open Access:— free for readers, with article processing charges (APC) paid by authors or their institutions.

High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, Ei Compendex, CaPlus / SciFinder, Inspec, Astrophysics Data System, and many other databases.

Journal Rank: JCR - Q1 (*Metallurgy & Metallurgical Engineering*) / CiteScore - Q2 (*Condensed Matter Physics*)

Contact Us

Materials
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland

Tel: +41 61 683 77 34
www.mdpi.com
materials@mdpi.com
@Materials_Mdpi