Passive Oxide Films and Their Susceptibility to Corrosion

Message from the Guest Editor

Dear Colleagues,

It is only the presence of passive oxide films that allows us to make use a number of thermodynamically reactive metals, such as aluminium and titanium alloys, as well as stainless steels. Despite the obvious economic importance of these thin films and decades of study, we are only now starting to really understand their properties; be it crystallinity, electrical conductivity or even in some cases composition. This knew knowledge should lead us to a better understanding of, or, perhaps, to a better agreement on, the mechanisms behind the breakdown of passive films and the subsequent corrosion of the underlying substrate.

The scope of this Special Issue covers, but is not limited to: The nature of passive films on industrially important metals and alloys and their role in preventing corrosion and degradation.

Prof. Dr. Daniel J. Blackwood

Guest Editor

mdpi.com/si/7230
Message from the Editor-in-Chief

Materials (ISSN 1996-1944) was launched in 2008. The journal covers twenty comprehensive topics: biomaterials, energy materials, advanced composites, structure analysis and characterization, porous materials, manufacturing processes and systems, advanced nanomaterials, smart materials, thin films and interfaces, catalytic materials and carbon materials, materials chemistry, materials physics, optics and photonics, corrosion and materials degradation, construction and building materials, materials simulation and design, electronic materials, advanced and functional ceramics, metals and alloys, general. The distinguished and dedicated editorial board and our strict peer-review process ensure the highest degree of scientific rigor and review of all published articles. Materials provides a unique opportunity to contribute high quality articles and to take advantage of its large readership.

Author Benefits

Open Access:— free for readers, with article processing charges (APC) paid by authors or their institutions.

High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, Ei Compendex, CaPlus / SciFinder, Inspec, Astrophysics Data System, and many other databases.

Journal Rank: JCR - Q1 (Metallurgy & Metallurgical Engineering) / CiteScore - Q2 (Condensed Matter Physics)