Message from the Guest Editor

Dear Colleagues,

In recent years, graphene oxide has received much attention as a precursor for the highly acclaimed graphene nanomaterial. The degree of oxidation in graphene oxide is one of the parameters employed in order to tailor its applications. Other aspects regard the properties of the starting graphite, the exfoliation of graphene oxide, and the subsequent reduction of graphene oxide that can be carried out via chemical, thermal, or electrochemical routes. In particular, the properties of graphene oxide open up new fields of application as high-performance electrodes in energy storage devices, sensing devices, gas adsorption, optoelectronics, or biomedical applications. However, it is challenging to make more efficient devices with required efficiencies by optimizing the availability, environmentally friendliness, and cost of raw materials, synthesis costs, and selecting the size-induced properties of graphene oxide nanomaterials.

It is my pleasure to invite you to submit reviews, regular research papers, and communications to this Special Issue on Graphene Oxide: Synthesis, Reduction, and Frontier Applications.
Editor-in-Chief

Prof. Dr. Maryam Tabrizian
Professor of Biomedical Engineering, Professor of Bioengineering, Professor of Experimental Surgery, Associate Dean—Research and Graduate Studies, Department of Biomedical Engineering, Faculty of Medicine/Faculty of Dentistry, Duff Medical Science Building, Room 313, 3775 University Street, Montreal, QC, H3A 2B4, Canada

Message from the Editor-in-Chief

Materials (ISSN 1996-1944) was launched in 2008. The journal covers fourteen comprehensive topics: Biomaterials; Energy Materials; Composites; Structure Analysis; Porous Materials; Manufacturing Processes; Advanced Nanomaterials; Smart Materials; Thin Films; Catalytic Materials; Carbon Materials; Materials Chemistry; Materials Physics; Optics and Photonics; Corrosion; Building Materials. The distinguished and dedicated editorial board and our strict peer-review process ensure the highest degree of scientific rigor and review of all published articles.

Materials provides an unique opportunity to contribute high quality articles and to take advantage of its large readership.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), Ei Compendex and other databases. Citations available in PubMed, full-text archived in PubMed Central.

CiteScore (2018 Scopus data): 3.26, which equals rank 97/439 (Q1) in 'General Materials Science'.

Contact Us

Materials
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland
Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
www.mdpi.com
materials@mdpi.com
@Materials_Mdpi