Surface properties of modern materials are usually inadequate so they should be modified prior to application or further processing such as coating with functional materials. Both morphological properties and chemical structure/composition should be modified in order to obtain a desired surface finish. Various treatment procedures have been employed and many are based on application of non-equilibrium gaseous media, especially gaseous plasma. Although such treatments have been studied extensively in past decades, and actually commercialized, the exact mechanism of interaction between reactive gaseous species and solid materials is still poorly understood.

It is my pleasure to invite you to submit a manuscript for this Special Issue. Full papers, communications, and reviews are all welcome. Critical reviews in specific modern topics such as bio-compatibility of advanced polymers and polymer composites are particularly welcome.

Keywords

- surface properties
- nanostructuring
- functionalization
- grafting
Message from the Editor-in-Chief

Materials (ISSN 1996-1944) was launched in 2008. The journal covers fourteen comprehensive topics: Biomaterials; Energy Materials; Composites; Structure Analysis; Porous Materials; Manufacturing Processes; Advanced Nanomaterials; Smart Materials; Thin Films; Catalytic Materials; Carbon Materials; Materials Chemistry; Materials Physics; Optics and Photonics; Corrosion; Building Materials. The distinguished and dedicated editorial board and our strict peer-review process ensure the highest degree of scientific rigor and review of all published articles.

Materials provides an unique opportunity to contribute high quality articles and to take advantage of its large readership.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), Ei Compendex and other databases. Citations available in PubMed, full-text archived in PubMed Central.

CiteScore (2018 Scopus data): 3.26, which equals rank 97/439 (Q1) in 'General Materials Science'.

Contact Us

Materials
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland
Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
mdpi.com/journal/materials
www.mdpi.com/materials@mdpi.com
@Materials_Mdpi