Conventional and Microwave Sintering Techniques in Materials

Message from the Guest Editor

This Special Issue of *Materials* is focused on the sintering of materials involving conventional and microwave heating methods. In the last couple of decades, microwave heating has emerged as a well-recognized method for the sintering of a variety of materials, including ceramics, composites, metals, semiconductors, and advanced ceramics. The theories to explain the sintering mechanism(s) during microwave heating are still under discussion and have not been fully explained. Papers involving comparisons between conventional and microwave methods are welcome. Microwave heating takes place as a result of the interaction of an electromagnetic field with matter through various inherent properties of the material under study. Microwave sintering of metallic materials is a rather new area of research. Papers involving these aspects are most welcome. The spark plasma sintering method and other methods involving electromagnetic fields are also rapid sintering methods of specific materials. Papers based on these methods are also welcome for this Special Issue.
Editor-in-Chief

Prof. Dr. Maryam Tabrizian
Professor of Biomedical Engineering, Professor of Bioengineering, Professor of Experimental Surgery, Associate Dean—Research and Graduate Studies, Department of Biomedical Engineering, Faculty of Medicine/Faculty of Dentistry, Duff Medical Science Building, Room 313, 3775 University Street, Montreal, QC, H3A 2B4, Canada

Message from the Editor-in-Chief

Materials (ISSN 1996-1944) was launched in 2008. The journal covers fourteen comprehensive topics: Biomaterials; Energy Materials; Composites; Structure Analysis; Porous Materials; Manufacturing Processes; Advanced Nanomaterials; Smart Materials; Thin Films; Catalytic Materials; Carbon Materials; Materials Chemistry; Materials Physics; Optics and Photonics; Corrosion; Building Materials. The distinguished and dedicated editorial board and our strict peer-review process ensure the highest degree of scientific rigor and review of all published articles.

Materials provides an unique opportunity to contribute high quality articles and to take advantage of its large readership.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), Ei Compendex and other databases. Citations available in PubMed, full-text archived in PubMed Central.

CiteScore (2018 Scopus data): 3.26, which equals rank 97/439 (Q1) in 'General Materials Science'.

Contact Us

Materials
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland
Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
www.mdpi.com

mdpi.com/journal/materials
materials@mdpi.com
@Materials_Mdpi