The Application of Electroactive Polymers

Guest Editor:

Prof. Jennifer Irvin
Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
jennifer.irvin@txstate.edu

Deadline for manuscript submissions:
31 December 2019

Message from the Guest Editor

Electroactive polymers (also known as conducting polymers or inherently/intrinsically conducting polymers) are polymers that change their properties as a function of applied electric fields. Changes in polymer oxidation state result in significant changes in volume, color, reactivity, permeability, conductivity, and solubility. The ability to change these properties at will is what has led to most of the potential applications. Stable oxidation/reduction processes allow the materials to be used for energy storage (batteries and capacitors) and static dissipation; conductivity changes are useful for sensors, electromagnetic shielding, and artificial nerves; changes in volume have practical applications in actuators, drug delivery, and separations; light absorption and emission processes allow the polymers to be useful for photovoltaic and light emitting applications as well as photothermal therapeutics; changes in color have led to applications in electrochromics.

We invite the scientific community to submit their contributions, in the form of original research articles and review articles, in all areas of applications of electroactive polymers.

mdpi.com/si/18307
Editor-in-Chief

Prof. Dr. Maryam Tabrizian
Professor of Biomedical Engineering, Professor of Bioengineering, Professor of Experimental Surgery, Associate Dean—Research and Graduate Studies, Department of Biomedical Engineering, Faculty of Medicine/Faculty of Dentistry, Duff Medical Science Building, Room 313, 3775 University Street, Montreal, QC, H3A 2B4, Canada

Message from the Editor-in-Chief

Materials (ISSN 1996-1944) was launched in 2008. The journal covers fourteen comprehensive topics: Biomaterials; Energy Materials; Composites; Structure Analysis; Porous Materials; Manufacturing Processes; Advanced Nanomaterials; Smart Materials; Thin Films; Catalytic Materials; Carbon Materials; Materials Chemistry; Materials Physics; Optics and Photonics; Corrosion; Building Materials. The distinguished and dedicated editorial board and our strict peer-review process ensure the highest degree of scientific rigor and review of all published articles.

Materials provides an unique opportunity to contribute high quality articles and to take advantage of its large readership.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), Ei Compendex and other databases. Citations available in PubMed, full-text archived in PubMed Central.

CiteScore (2018 Scopus data): 3.26, which equals rank 97/439 (Q1) in 'General Materials Science'.

Contact Us

Materials
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland
Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
www.mdpi.com
mdpi.com/journal/materials
materials@mdpi.com
@Materials_Mdpi