Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3419 KiB  
Article
The Clinical Potential of 3D-Printed Crowns Reinforced with Zirconia and Glass Silica Microfillers
by Abdullah Alshamrani, Abdulaziz Alhotan, Ahmed Owais and Ayman Ellakwa
J. Funct. Biomater. 2023, 14(5), 267; https://doi.org/10.3390/jfb14050267 - 11 May 2023
Cited by 16 | Viewed by 4445
Abstract
The development of 3D-printed crown resin materials with improved mechanical and physical properties is an area of growing interest in dentistry. This study aimed to develop a 3D-printed crown resin material modified with zirconia glass (ZG) and glass silica (GS) microfillers to enhance [...] Read more.
The development of 3D-printed crown resin materials with improved mechanical and physical properties is an area of growing interest in dentistry. This study aimed to develop a 3D-printed crown resin material modified with zirconia glass (ZG) and glass silica (GS) microfillers to enhance overall mechanical and physical properties. A total of 125 specimens were created and divided into five groups: control unmodified resin, 5% either ZG or GS reinforced 3D-printed resin, and 10% either ZG or GS reinforced 3D-printed resin. The fracture resistance, surface roughness, and translucency parameter were measured, and fractured crowns were studied under a scanning electron microscope. The results showed that 3D-printed parts that were strengthened with ZG and GS microfillers demonstrated comparable mechanical performance to unmodified crown resin but resulted in greater surface roughness, and only the group that contained 5% ZG showed an increase in translucency. However, it should be noted that increased surface roughness may impact the aesthetics of the crowns, and further optimisation of microfillers concentrations may be necessary. These findings suggest that the newly developed dental-based resins that incorporate microfillers could be suitable for clinical applications, but further studies are necessary to optimise the nanoparticle concentrations and investigate their long-term clinical outcomes. Full article
Show Figures

Figure 1

19 pages, 1359 KiB  
Review
Wood as Possible Renewable Material for Bone Implants—Literature Review
by Vadims Nefjodovs, Laura Andze, Martins Andzs, Inese Filipova, Ramunas Tupciauskas, Linda Vecbiskena and Martins Kapickis
J. Funct. Biomater. 2023, 14(5), 266; https://doi.org/10.3390/jfb14050266 - 10 May 2023
Cited by 8 | Viewed by 4707
Abstract
Bone fractures and bone defects affect millions of people every year. Metal implants for bone fracture fixation and autologous bone for defect reconstruction are used extensively in treatment of these pathologies. Simultaneously, alternative, sustainable, and biocompatible materials are being researched to improve existing [...] Read more.
Bone fractures and bone defects affect millions of people every year. Metal implants for bone fracture fixation and autologous bone for defect reconstruction are used extensively in treatment of these pathologies. Simultaneously, alternative, sustainable, and biocompatible materials are being researched to improve existing practice. Wood as a biomaterial for bone repair has not been considered until the last 50 years. Even nowadays there is not much research on solid wood as a biomaterial in bone implants. A few species of wood have been investigated. Different techniques of wood preparation have been proposed. Simple pre-treatments such as boiling in water or preheating of ash, birch and juniper woods have been used initially. Later researchers have tried using carbonized wood and wood derived cellulose scaffold. Manufacturing implants from carbonized wood and cellulose requires more extensive wood processing—heat above 800 °C and chemicals to extract cellulose. Carbonized wood and cellulose scaffolds can be combined with other materials, such as silicon carbide, hydroxyapatite, and bioactive glass to improve biocompatibility and mechanical durability. Throughout the publications wood implants have provided good biocompatibility and osteoconductivity thanks to wood’s porous structure. Full article
(This article belongs to the Special Issue Bone Regeneration and Repair Materials)
Show Figures

Figure 1

15 pages, 3692 KiB  
Article
Direct-Writing Electrospun Functionalized Scaffolds for Periodontal Regeneration: In Vitro Studies
by Laura Bourdon, Nina Attik, Liza Belkessam, Charlène Chevalier, Colin Bousige, Arnaud Brioude and Vincent Salles
J. Funct. Biomater. 2023, 14(5), 263; https://doi.org/10.3390/jfb14050263 - 9 May 2023
Cited by 5 | Viewed by 3050
Abstract
Multiphasic scaffolds that combine different architectural, physical, and biological properties are the best option for the regeneration of complex tissues such as the periodontium. Current developed scaffolds generally lack architectural accuracy and rely on multistep manufacturing, which is difficult to implement for clinical [...] Read more.
Multiphasic scaffolds that combine different architectural, physical, and biological properties are the best option for the regeneration of complex tissues such as the periodontium. Current developed scaffolds generally lack architectural accuracy and rely on multistep manufacturing, which is difficult to implement for clinical applications. In this context, direct-writing electrospinning (DWE) represents a promising and rapid technique for developing thin 3D scaffolds with controlled architecture. The current study aimed to elaborate a biphasic scaffold using DWE based on two polycaprolactone solutions with interesting properties for bone and cement regeneration. One of the two scaffold parts contained hydroxyapatite nanoparticles (HAP) and the other contained the cementum protein 1 (CEMP1). After morphological characterizations, the elaborated scaffolds were assessed regarding periodontal ligament (PDL) cells in terms of cell proliferation, colonization, and mineralization ability. The results demonstrated that both HAP- and CEMP1-functionalized scaffolds were colonized by PDL cells and enhanced mineralization ability compared to unfunctionalized scaffolds, as revealed by alizarin red staining and OPN protein fluorescent expression. Taken together, the current data highlighted the potential of functional and organized scaffolds to stimulate bone and cementum regeneration. Moreover, DWE could be used to develop smart scaffolds with the ability to spatially control cellular orientation with suitable cellular activity at the micrometer scale, thereby enhancing periodontal and other complex tissue regeneration. Full article
(This article belongs to the Special Issue Advanced Biomaterials for Periodontal Regeneration)
Show Figures

Figure 1

11 pages, 2588 KiB  
Article
Microleakage Evaluation of Temporary Restorations Used in Endodontic Treatment—An Ex Vivo Study
by Siri Paulo, Ana Margarida Abrantes, Mariana Xavier, Ana Filipa Brito, Ricardo Teixo, Ana Sofia Coelho, Anabela Paula, Eunice Carrilho, Maria Filomena Botelho, Carlos Miguel Marto and Manuel Marques Ferreira
J. Funct. Biomater. 2023, 14(5), 264; https://doi.org/10.3390/jfb14050264 - 9 May 2023
Cited by 3 | Viewed by 4450
Abstract
(1) Background: Coronal microleakage can lead to endodontic treatment failure. This study aimed to compare the sealing ability of different temporary restorative materials used during endodontic treatment. (2) Methods: Eighty sheep incisors were collected, uniformized in length, and access cavities were performed, except [...] Read more.
(1) Background: Coronal microleakage can lead to endodontic treatment failure. This study aimed to compare the sealing ability of different temporary restorative materials used during endodontic treatment. (2) Methods: Eighty sheep incisors were collected, uniformized in length, and access cavities were performed, except for in the negative control group, where the teeth were left intact. The teeth were divided into six different groups. In the positive control group, the access cavity was made and left empty. In the experimental groups, access cavities were restored with three different temporary materials (IRM®, Ketac™ Silver, and Cavit™) and with a definitive restorative material (Filtek Supreme™). The teeth were submitted to thermocycling, and two and four weeks later, they were infiltrated with 99mTcNaO4, and nuclear medicine imaging was performed. (3) Results: Filtek Supreme™ obtained the lowest infiltration values. Regarding the temporary materials, at two weeks, Ketac™ Silver presented the lowest infiltration, followed by IRM®, whereas Cavit™ presented the highest infiltration. At four weeks, Ketac™ Silver remained with the lowest values, whereas Cavit™ decreased the infiltration, comparable to IRM®. (4) Conclusion: Regarding temporary materials, Ketac™ Silver had the lowest infiltration at 2 and 4 weeks, whereas the highest infiltration was found in the Cavit™ group at two weeks and in the IRM® group at 4 weeks. Full article
(This article belongs to the Special Issue Advanced Materials for Clinical Endodontic Applications)
Show Figures

Figure 1

12 pages, 2657 KiB  
Article
Self-Assembling Peptide RADA16 Nanofiber Scaffold Hydrogel-Wrapped Concentrated Growth Factors in Osteogenesis of MC3T3
by Renjie Yang, Jiali Chen, Dingjie Wang, Yichen Xu and Guomin Ou
J. Funct. Biomater. 2023, 14(5), 260; https://doi.org/10.3390/jfb14050260 - 8 May 2023
Cited by 7 | Viewed by 2713
Abstract
Concentrated growth factors (CGFs) are widely used in surgery with bone grafting, but the release of growth factors from CGFs is rapid. RADA16, a self-assembling peptide, can form a scaffold that is similar to the extracellular matrix. Based on the properties of RADA16 [...] Read more.
Concentrated growth factors (CGFs) are widely used in surgery with bone grafting, but the release of growth factors from CGFs is rapid. RADA16, a self-assembling peptide, can form a scaffold that is similar to the extracellular matrix. Based on the properties of RADA16 and CGF, we hypothesized that the RADA16 nanofiber scaffold hydrogel could enhance the function of CGFs and that the RADA16 nanofiber scaffold hydrogel-wrapped CGFs (RADA16-CGFs) would perform a good osteoinductive function. This study aimed to investigate the osteoinductive function of RADA16-CGFs. Scanning electron microscopy, rheometry, and ELISA were performed, and MC3T3-E1 cells were used to test cell adhesion, cytotoxicity, and mineralization after administration with RADA16-CGFs. We found that RADA16 endowed with the sustained release of growth factors from CGFs, which can help maximize the function of CGFs in osteoinduction. The application of the atoxic RADA16 nanofiber scaffold hydrogel with CGFs can be a new therapeutic strategy for the treatment of alveolar bone loss and other problems that require bone regeneration. Full article
Show Figures

Figure 1

13 pages, 5201 KiB  
Article
Xeno-Free Biomimetic ECM Model for Investigation of Matrix Composition and Stiffness on Astrocyte Cell Response
by Bayan M. Saleh, Ayda Pourmostafa, Nashaita Y. Patrawalla and Vipuil Kishore
J. Funct. Biomater. 2023, 14(5), 256; https://doi.org/10.3390/jfb14050256 - 5 May 2023
Cited by 9 | Viewed by 2661
Abstract
Astrocytes, highly specialized glial cells, play a critical role in neuronal function. Variations in brain extracellular matrix (ECM) during development and disease can significantly alter astrocyte cell function. Age-related changes in ECM properties have been linked to neurodegenerative diseases such as Alzheimer’s disease. [...] Read more.
Astrocytes, highly specialized glial cells, play a critical role in neuronal function. Variations in brain extracellular matrix (ECM) during development and disease can significantly alter astrocyte cell function. Age-related changes in ECM properties have been linked to neurodegenerative diseases such as Alzheimer’s disease. The goal of this study was to develop hydrogel-based biomimetic ECM models with varying stiffness and evaluate the effects of ECM composition and stiffness on astrocyte cell response. Xeno-free ECM models were synthesized by combining varying ratios of human collagen and thiolated hyaluronic acid (HA) crosslinked with polyethylene glycol diacrylate. Results showed that modulating ECM composition yielded hydrogels with varying stiffnesses that match the stiffness of the native brain ECM. Collagen-rich hydrogels swell more and exhibit greater stability. Higher metabolic activity and greater cell spreading was observed in hydrogels with lower HA. Soft hydrogels trigger astrocyte activation indicated by greater cell spreading, high GFAP expression and low ALDH1L1 expression. This work presents a baseline ECM model to investigate the synergistic effects of ECM composition and stiffness on astrocytes, which could be further developed to identify key ECM biomarkers and formulate new therapies to alleviate the impact of ECM changes on the onset and progression of neurodegenerative diseases. Full article
(This article belongs to the Special Issue Collagen-Based Materials for Biomedical Applications)
Show Figures

Figure 1

11 pages, 1925 KiB  
Article
The Influence of Polishing and Artificial Aging on BioMed Amber® Resin’s Mechanical Properties
by Anna Paradowska-Stolarz, Marcin Mikulewicz, Mieszko Wieckiewicz and Joanna Wezgowiec
J. Funct. Biomater. 2023, 14(5), 254; https://doi.org/10.3390/jfb14050254 - 2 May 2023
Cited by 4 | Viewed by 1991
Abstract
Currently, 3D print is becoming more common in all branches of medicine, including dentistry. Some novel resins, such as BioMed Amber (Formlabs), are used and incorporated to more advanced techniques. The aims of the study were to check whether or not polishing and/or [...] Read more.
Currently, 3D print is becoming more common in all branches of medicine, including dentistry. Some novel resins, such as BioMed Amber (Formlabs), are used and incorporated to more advanced techniques. The aims of the study were to check whether or not polishing and/or artificial aging influences the properties of the 3D-printed resin. A total of 240 specimens of BioMed Resin were printed. Two shapes (rectangular and dumbbell) were prepared. Of each shape, 120 specimens were divided into four groups each (with no influence, after polishing only, after artificial aging only, and after both polishing and artificial aging). Artificial aging took place in water at the temperature of 37 °C for 90 days. For testing, the universal testing machine (Z10-X700, AML Instruments, Lincoln, UK) was used. The axial compression was performed with the speed of 1mm/min. The tensile modulus was measured with the constant speed of 5 mm/min. The highest resistance to compression and tensile test were observed in the specimens that were neither polished nor aged (0.88 ± 0.03 and 2.88 ± 0.26, respectively). The lowest resistance to compression was observed in the specimens that were not polished, but aged (0.70 ± 0.02). The lowest results of the tensile test were observed when specimens were both polished and aged (2.05 ± 0.28). Both polishing and artificial aging weakened the mechanical properties of the BioMed Amber resin. The compressive modulus changed much with or without polishing. The tensile modulus differed in specimens that were either polished or aged. The application of both did not change the properties when compared to the polished or aged probes only. Full article
Show Figures

Graphical abstract

12 pages, 5064 KiB  
Article
Decellularized Scaffolds of Nopal (Opuntia Ficus-indica) for Bioengineering in Regenerative Dentistry
by Ruth Betsabe Zamudio-Ceja, Rene Garcia-Contreras, Patricia Alejandra Chavez-Granados, Benjamin Aranda-Herrera, Hugo Alvarado-Garnica, Carlos A. Jurado and Nicholas G. Fischer
J. Funct. Biomater. 2023, 14(5), 252; https://doi.org/10.3390/jfb14050252 - 1 May 2023
Cited by 5 | Viewed by 3266
Abstract
Opuntia Ficus-indica, or nopal, is traditionally used for its medicinal properties in Mexico. This study aims to decellularize and characterize nopal (Opuntia Ficus-indica) scaffolds, assess their degradation and the proliferation of hDPSC, and determine potential pro-inflammatory effects by assessing the [...] Read more.
Opuntia Ficus-indica, or nopal, is traditionally used for its medicinal properties in Mexico. This study aims to decellularize and characterize nopal (Opuntia Ficus-indica) scaffolds, assess their degradation and the proliferation of hDPSC, and determine potential pro-inflammatory effects by assessing the expression of cyclooxygenase 1 and 2 (COX-1 and 2). The scaffolds were decellularized using a 0.5% sodium dodecyl sulfate (SDS) solution and confirmed by color, optical microscopy, and SEM. The degradation rates and mechanical properties of the scaffolds were determined by weight and solution absorbances using trypsin and PBS and tensile strength testing. Human dental pulp stem cells (hDPSCs) primary cells were used for scaffold–cell interaction and proliferation assays, as well as an MTT assay to determine proliferation. Proinflammatory protein expression of COX-I and -II was discovered by Western blot assay, and the cultures were induced into a pro-inflammatory state with interleukin 1-β. The nopal scaffolds exhibited a porous structure with an average pore size of 252 ± 77 μm. The decellularized scaffolds showed a 57% reduction in weight loss during hydrolytic degradation and a 70% reduction during enzymatic degradation. There was no difference in tensile strengths between native and decellularized scaffolds (12.5 ± 1 and 11.8 ± 0.5 MPa). Furthermore, hDPSCs showed a significant increase in cell viability of 95% and 106% at 168 h for native and decellularized scaffolds, respectively. The combination of the scaffold and hDPSCs did not cause an increase in the expression of COX-1 and COX-2 proteins. However, when the combination was exposed to IL-1β, there was an increase in the expression of COX-2. This study demonstrates the potential application of nopal scaffolds in tissue engineering and regenerative medicine or dentistry, owing to their structural characteristics, degradation properties, mechanical properties, ability to induce cell proliferation, and lack of enhancement of pro-inflammatory cytokines. Full article
Show Figures

Figure 1

14 pages, 3382 KiB  
Article
Cell Responses to Calcium- and Protein-Conditioned Titanium: An In Vitro Study
by Qiang Zhi, Yuehua Zhang, Jianxu Wei, Xiaolei Lv, Shichong Qiao and Hongchang Lai
J. Funct. Biomater. 2023, 14(5), 253; https://doi.org/10.3390/jfb14050253 - 1 May 2023
Cited by 3 | Viewed by 2267
Abstract
Dental implants have become the leading choice for patients who lose teeth; however, dental implantation is challenged by peri-implant infections. Here, calcium-doped titanium was fabricated by the combinational use of thermal evaporation and electron beam evaporation in a vacuum; then, the material was [...] Read more.
Dental implants have become the leading choice for patients who lose teeth; however, dental implantation is challenged by peri-implant infections. Here, calcium-doped titanium was fabricated by the combinational use of thermal evaporation and electron beam evaporation in a vacuum; then, the material was immersed in a calcium-free phosphate-buffered saline solution containing human plasma fibrinogen and incubated at 37 °C for 1 h, creating calcium- and protein-conditioned titanium. The titanium contained 12.8 ± 1.8 at.% of calcium, which made the material more hydrophilic. Calcium release by the material during protein conditioning was able to change the conformation of the adsorbed fibrinogen, which acted against the colonization of peri-implantitis-associated pathogens (Streptococcus mutans, UA 159, and Porphyromonas gingivalis, ATCC 33277), while supporting the adhesion and growth of human gingival fibroblasts (hGFs). The present study confirms that the combination of calcium-doping and fibrinogen-conditioning is a promising pathway to meeting the clinical demand for suppressing peri-implantitis. Full article
(This article belongs to the Special Issue State-of-the-Art Functional Biomaterials in China)
Show Figures

Figure 1

20 pages, 6487 KiB  
Article
Robocasting of Ceramic Fischer–Koch S Scaffolds for Bone Tissue Engineering
by Vail Baumer, Erin Gunn, Valerie Riegle, Claire Bailey, Clayton Shonkwiler and David Prawel
J. Funct. Biomater. 2023, 14(5), 251; https://doi.org/10.3390/jfb14050251 - 30 Apr 2023
Cited by 16 | Viewed by 3935
Abstract
Triply Periodic Minimal Surfaces (TPMS) are promising structures for bone tissue engineering scaffolds due to their relatively high mechanical energy absorption, smoothly interconnected porous structure, scalable unit cell topology, and relatively high surface area per volume. Calcium phosphate-based materials, such as hydroxyapatite and [...] Read more.
Triply Periodic Minimal Surfaces (TPMS) are promising structures for bone tissue engineering scaffolds due to their relatively high mechanical energy absorption, smoothly interconnected porous structure, scalable unit cell topology, and relatively high surface area per volume. Calcium phosphate-based materials, such as hydroxyapatite and tricalcium phosphate, are very popular scaffold biomaterials due to their biocompatibility, bioactivity, compositional similarities to bone mineral, non-immunogenicity, and tunable biodegradation. Their brittle nature can be partially mitigated by 3D printing them in TPMS topologies such as gyroids, which are widely studied for bone regeneration, as evidenced by their presence in popular 3D-printing slicers, modeling systems, and topology optimization tools. Although structural and flow simulations have predicted promising properties of other TPMS scaffolds, such as Fischer–Koch S (FKS), to the best of our knowledge, no one has explored these possibilities for bone regeneration in the laboratory. One reason for this is that fabrication of the FKS scaffolds, such as by 3D printing, is challenged by a lack of algorithms to model and slice this topology for use by low-cost biomaterial printers. This paper presents an open-source software algorithm that we developed to create 3D-printable FKS and gyroid scaffold cubes, with a framework that can accept any continuous differentiable implicit function. We also report on our successful 3D printing of hydroxyapatite FKS scaffolds using a low-cost method that combines robocasting with layer-wise photopolymerization. Dimensional accuracy, internal microstructure, and porosity characteristics are also presented, demonstrating promising potential for the 3D printing of TPMS ceramic scaffolds for bone regeneration. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

14 pages, 1575 KiB  
Review
Utilization of Stimuli-Responsive Biomaterials in the Formulation of Cancer Vaccines
by Arun Kumar Singh, Rishabha Malviya, Bhupendra Prajapati, Sudarshan Singh and Priyanshi Goyal
J. Funct. Biomater. 2023, 14(5), 247; https://doi.org/10.3390/jfb14050247 - 28 Apr 2023
Cited by 11 | Viewed by 2648
Abstract
Immunology research has focused on developing cancer vaccines to increase the number of tumor-specific effector cells and their ability to fight cancer over the last few decades. There is a lack of professional success in vaccines compared to checkpoint blockade and adoptive T-cell [...] Read more.
Immunology research has focused on developing cancer vaccines to increase the number of tumor-specific effector cells and their ability to fight cancer over the last few decades. There is a lack of professional success in vaccines compared to checkpoint blockade and adoptive T-cell treatment. The vaccine’s inadequate delivery method and antigen selection are most likely to blame for the poor results. Antigen-specific vaccines have recently shown promising results in preclinical and early clinical investigations. To target particular cells and trigger the best immune response possible against malignancies, it is necessary to design a highly efficient and secure delivery method for cancer vaccines; however, enormous challenges must be overcome. Current research is focused on developing stimulus-responsive biomaterials, which are a subset of the range of levels of materials, to enhance therapeutic efficacy and safety and better regulate the transport and distribution of cancer immunotherapy in vivo. A concise analysis of current developments in the area of biomaterials that respond to stimuli has been provided in brief research. Current and anticipated future challenges and opportunities in the sector are also highlighted. Full article
(This article belongs to the Section Biomaterials for Cancer Therapies)
Show Figures

Figure 1

21 pages, 4576 KiB  
Review
Effect of Size, Shape and Surface Functionalization on the Antibacterial Activity of Silver Nanoparticles
by Arianna Menichetti, Alexandra Mavridi-Printezi, Dario Mordini and Marco Montalti
J. Funct. Biomater. 2023, 14(5), 244; https://doi.org/10.3390/jfb14050244 - 26 Apr 2023
Cited by 260 | Viewed by 14940
Abstract
Silver nanoparticles (AgNPs) are the most investigated antibacterial agents against multidrug resistant (MDR) pathogens. They can lead to cellular death by means of different mechanisms, damaging several cell compartments, from the external membrane, to enzymes, DNA and proteins; this simultaneous attack amplifies the [...] Read more.
Silver nanoparticles (AgNPs) are the most investigated antibacterial agents against multidrug resistant (MDR) pathogens. They can lead to cellular death by means of different mechanisms, damaging several cell compartments, from the external membrane, to enzymes, DNA and proteins; this simultaneous attack amplifies the toxic effect on bacteria with respect to traditional antibiotics. The effectiveness of AgNPs against MDR bacteria is strongly correlated with their chemical and morphological properties, which influence the pathways involved in cellular damage. In this review, AgNPs’ size, shape and modification by functional groups or other materials are reported, both to investigate the different synthetic pathways correlated with nanoparticles’ modifications and to evaluate the related effect on their antibacterial activity. Indeed, understanding the synthetic conditions for obtaining performing antibacterial AgNPs could help to tailor new and improved silver-based agents to combat multidrug resistance. Full article
Show Figures

Figure 1

25 pages, 9475 KiB  
Review
Antibacterial-Based Hydrogel Coatings and Their Application in the Biomedical Field—A Review
by Tai Peng, Qi Shi, Manlong Chen, Wenyi Yu and Tingting Yang
J. Funct. Biomater. 2023, 14(5), 243; https://doi.org/10.3390/jfb14050243 - 25 Apr 2023
Cited by 25 | Viewed by 5466
Abstract
Hydrogels exhibit excellent moldability, biodegradability, biocompatibility, and extracellular matrix-like properties, which make them widely used in biomedical fields. Because of their unique three-dimensional crosslinked hydrophilic networks, hydrogels can encapsulate various materials, such as small molecules, polymers, and particles; this has become a hot [...] Read more.
Hydrogels exhibit excellent moldability, biodegradability, biocompatibility, and extracellular matrix-like properties, which make them widely used in biomedical fields. Because of their unique three-dimensional crosslinked hydrophilic networks, hydrogels can encapsulate various materials, such as small molecules, polymers, and particles; this has become a hot research topic in the antibacterial field. The surface modification of biomaterials by using antibacterial hydrogels as coatings contributes to the biomaterial activity and offers wide prospects for development. A variety of surface chemical strategies have been developed to bind hydrogels to the substrate surface stably. We first introduce the preparation method for antibacterial coatings in this review, which includes surface-initiated graft crosslinking polymerization, anchoring the hydrogel coating to the substrate surface, and the LbL self-assembly technique to coat crosslinked hydrogels. Then, we summarize the applications of hydrogel coating in the biomedical antibacterial field. Hydrogel itself has certain antibacterial properties, but the antibacterial effect is not sufficient. In recent research, in order to optimize its antibacterial performance, the following three antibacterial strategies are mainly adopted: bacterial repellent and inhibition, contact surface killing of bacteria, and release of antibacterial agents. We systematically introduce the antibacterial mechanism of each strategy. The review aims to provide reference for the further development and application of hydrogel coatings. Full article
(This article belongs to the Special Issue State-of-the-Art Functional Biomaterials in China)
Show Figures

Figure 1

34 pages, 10970 KiB  
Review
Mechanical Surface Treatments for Controlling Surface Integrity and Corrosion Resistance of Mg Alloy Implants: A Review
by Vincent Santos, Mohammad Uddin and Colin Hall
J. Funct. Biomater. 2023, 14(5), 242; https://doi.org/10.3390/jfb14050242 - 24 Apr 2023
Cited by 19 | Viewed by 3841
Abstract
The present paper aims to provide an overview of the current state-of-the-art mechanical surface modification technologies and their response in terms of surface roughness, surface texture, and microstructural change due to cold work-hardening, affecting the surface integrity and corrosion resistance of different Mg [...] Read more.
The present paper aims to provide an overview of the current state-of-the-art mechanical surface modification technologies and their response in terms of surface roughness, surface texture, and microstructural change due to cold work-hardening, affecting the surface integrity and corrosion resistance of different Mg alloys. The process mechanics of five main treatment strategies, namely, shot peening, surface mechanical attrition treatment, laser shock peening, ball burnishing, and ultrasonic nanocrystal surface modification, were discussed. The influence of the process parameters on plastic deformation and degradation characteristics was thoroughly reviewed and compared from the perspectives of surface roughness, grain modification, hardness, residual stress, and corrosion resistance over short- and long-term periods. Potential and advances in new and emerging hybrid and in-situ surface treatment strategies were comprehensively eluded and summarised. This review takes a holistic approach to identifying the fundamentals, pros, and cons of each process, thereby contributing to bridging the current gap and challenge in surface modification technology for Mg alloys. To conclude, a brief summary and future outlook resulting from the discussion were presented. The findings would offer a useful insight and guide for researchers to focus on developing new surface treatment routes to resolve surface integrity and early degradation problems for successful application of biodegradable Mg alloy implants. Full article
(This article belongs to the Special Issue Frontiers in Biodegradable Materials and Their Processing)
Show Figures

Figure 1

21 pages, 4431 KiB  
Article
Submicron-Grooved Films Modulate the Directional Alignment and Biological Function of Schwann Cells
by Zhen Zhang, Yuanliang Lv, Javad Harati, Jianan Song, Ping Du, Peiyan Ou, Jiaqi Liang, Huaiyu Wang and Peng-Yuan Wang
J. Funct. Biomater. 2023, 14(5), 238; https://doi.org/10.3390/jfb14050238 - 23 Apr 2023
Cited by 2 | Viewed by 2731
Abstract
Topographical cues on material surfaces are crucial for guiding the behavior of nerve cells and facilitating the repair of peripheral nerve defects. Previously, micron-grooved surfaces have shown great potential in controlling nerve cell alignment for studying the behavior and functions of those cells [...] Read more.
Topographical cues on material surfaces are crucial for guiding the behavior of nerve cells and facilitating the repair of peripheral nerve defects. Previously, micron-grooved surfaces have shown great potential in controlling nerve cell alignment for studying the behavior and functions of those cells and peripheral nerve regeneration. However, the effects of smaller-sized topographical cues, such as those in the submicron- and nano-scales, on Schwann cell behavior remain poorly understood. In this study, four different submicron-grooved polystyrene films (800/400, 800/100, 400/400, and 400/100) were fabricated to study the behavior, gene expression, and membrane potential of Schwann cells. The results showed that all submicron-grooved films could guide the cell alignment and cytoskeleton in a groove depth-dependent manner. Cell proliferation and cell cycle assays revealed that there was no significant difference between the submicron groove samples and the flat control. However, the submicron grooves can direct the migration of cells and upregulate the expression of critical genes in axon regeneration and myelination (e.g., MBP and Smad6). Finally, the membrane potential of the Schwann cells was significantly altered on the grooved sample. In conclusion, this study sheds light on the role of submicron-grooved patterns in regulating the behavior and function of Schwann cells, which provides unique insights for the development of implants for peripheral nerve regeneration. Full article
(This article belongs to the Special Issue State-of-the-Art Functional Biomaterials in China)
Show Figures

Figure 1

18 pages, 8973 KiB  
Review
Multiple-Ion Releasing Bioactive Surface Pre-Reacted Glass-Ionomer (S-PRG) Filler: Innovative Technology for Dental Treatment and Care
by Satoshi Imazato, Toshiyuki Nakatsuka, Haruaki Kitagawa, Jun-Ichi Sasaki, Satoshi Yamaguchi, Shuichi Ito, Hiroki Takeuchi, Ryota Nomura and Kazuhiko Nakano
J. Funct. Biomater. 2023, 14(4), 236; https://doi.org/10.3390/jfb14040236 - 21 Apr 2023
Cited by 34 | Viewed by 6758
Abstract
Surface Pre-Reacted Glass-ionomer (S-PRG) filler, which releases strontium (Sr2+), borate (BO33−), fluoride (F), sodium (Na+), silicate (SiO32−), and aluminum (Al3+) ions at high concentrations, is a unique glass filler [...] Read more.
Surface Pre-Reacted Glass-ionomer (S-PRG) filler, which releases strontium (Sr2+), borate (BO33−), fluoride (F), sodium (Na+), silicate (SiO32−), and aluminum (Al3+) ions at high concentrations, is a unique glass filler that are utilized in dentistry. Because of its multiple-ion releasing characteristics, S-PRG filler exhibits several bioactivities such as tooth strengthening, acid neutralization, promotion of mineralization, inhibition of bacteria and fungi, inhibition of matrix metalloproteinases, and enhancement of cell activity. Therefore, S-PRG filler per se and S-PRG filler-containing materials have the potential to be beneficial for various dental treatments and care. Those include restorative treatment, caries prevention/management, vital pulp therapy, endodontic treatment, prevention/treatment of periodontal disease, prevention of denture stomatitis, and perforation repair/root end filling. This review summarizes bioactive functions exhibited by S-PRG filler and its possible contribution to oral health. Full article
(This article belongs to the Special Issue Functional Materials for Dental Restorations)
Show Figures

Figure 1

19 pages, 3364 KiB  
Article
Antimicrobial PVA Hydrogels with Tunable Mechanical Properties and Antimicrobial Release Profiles
by Caitlyn Greene, Henry T. Beaman, Darnelle Stinfort, Maryam Ramezani and Mary Beth B. Monroe
J. Funct. Biomater. 2023, 14(4), 234; https://doi.org/10.3390/jfb14040234 - 20 Apr 2023
Cited by 7 | Viewed by 3509
Abstract
Hydrogels are broadly employed in wound healing applications due to their high water content and tissue-mimicking mechanical properties. Healing is hindered by infection in many types of wound, including Crohn’s fistulas, tunneling wounds that form between different portions of the digestive system in [...] Read more.
Hydrogels are broadly employed in wound healing applications due to their high water content and tissue-mimicking mechanical properties. Healing is hindered by infection in many types of wound, including Crohn’s fistulas, tunneling wounds that form between different portions of the digestive system in Crohn’s disease patients. Owing to the rise of drug-resistant infections, alternate approaches are required to treat wound infections beyond traditional antibiotics. To address this clinical need, we designed a water-responsive shape memory polymer (SMP) hydrogel, with natural antimicrobials in the form of phenolic acids (PAs), for potential use in wound filling and healing. The shape memory properties could allow for implantation in a low-profile shape, followed by expansion and would filling, while the PAs provide localized delivery of antimicrobials. Here, we developed a urethane-crosslinked poly(vinyl alcohol) hydrogel with cinnamic (CA), p-coumaric (PCA), and caffeic (Ca-A) acid chemically or physically incorporated at varied concentrations. We examined the effects of incorporated PAs on antimicrobial, mechanical, and shape memory properties, and on cell viability. Materials with physically incorporated PAs showed improved antibacterial properties with lower biofilm formation on hydrogel surfaces. Both modulus and elongation at break could be increased simultaneously in hydrogels after both forms of PA incorporation. Cellular response in terms of initial viability and growth over time varied based on PA structure and concentration. Shape memory properties were not negatively affected by PA incorporation. These PA-containing hydrogels with antimicrobial properties could provide a new option for wound filling, infection control, and healing. Furthermore, PA content and structure provide novel tools for tuning material properties independently of network chemistry, which could be harnessed in a range of materials systems and biomedical applications. Full article
(This article belongs to the Special Issue Biopolymer-Based Hydrogel Materials: Opportunities and Challenges)
Show Figures

Figure 1

21 pages, 1643 KiB  
Review
Peptide-Based Hydrogels: Template Materials for Tissue Engineering
by Roya Binaymotlagh, Laura Chronopoulou and Cleofe Palocci
J. Funct. Biomater. 2023, 14(4), 233; https://doi.org/10.3390/jfb14040233 - 19 Apr 2023
Cited by 15 | Viewed by 3535
Abstract
Tissue and organ regeneration are challenging issues, yet they represent the frontier of current research in the biomedical field. Currently, a major problem is the lack of ideal scaffold materials’ definition. As well known, peptide hydrogels have attracted increasing attention in recent years [...] Read more.
Tissue and organ regeneration are challenging issues, yet they represent the frontier of current research in the biomedical field. Currently, a major problem is the lack of ideal scaffold materials’ definition. As well known, peptide hydrogels have attracted increasing attention in recent years thanks to significant properties such as biocompatibility, biodegradability, good mechanical stability, and tissue-like elasticity. Such properties make them excellent candidates for 3D scaffold materials. In this review, the first aim is to describe the main features of a peptide hydrogel in order to be considered as a 3D scaffold, focusing in particular on mechanical properties, as well as on biodegradability and bioactivity. Then, some recent applications of peptide hydrogels in tissue engineering, including soft and hard tissues, will be discussed to analyze the most relevant research trends in this field. Full article
Show Figures

Figure 1

19 pages, 8312 KiB  
Article
Development of a More Environmentally Friendly Silk Fibroin Scaffold for Soft Tissue Applications
by Nathan V. Roblin, Megan K. DeBari, Sandra L. Shefter, Erica Iizuka and Rosalyn D. Abbott
J. Funct. Biomater. 2023, 14(4), 230; https://doi.org/10.3390/jfb14040230 - 18 Apr 2023
Cited by 10 | Viewed by 3760
Abstract
A push for environmentally friendly approaches to biomaterials fabrication has emerged from growing conservational concerns in recent years. Different stages in silk fibroin scaffold production, including sodium carbonate (Na2CO3)-based degumming and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-based fabrication, have drawn attention for their [...] Read more.
A push for environmentally friendly approaches to biomaterials fabrication has emerged from growing conservational concerns in recent years. Different stages in silk fibroin scaffold production, including sodium carbonate (Na2CO3)-based degumming and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-based fabrication, have drawn attention for their associated environmental concerns. Environmentally friendly alternatives have been proposed for each processing stage; however, an integrated green fibroin scaffold approach has not been characterized or used for soft tissue applications. Here, we show that the combination of sodium hydroxide (NaOH) as a substitute degumming agent with the popular “aqueous-based” alternative silk fibroin gelation method yields fibroin scaffolds with comparable properties to traditional Na2CO3-degummed aqueous-based scaffolds. The more environmentally friendly scaffolds were found to have comparable protein structure, morphology, compressive modulus, and degradation kinetics, with increased porosity and cell seeding density relative to traditional scaffolds. Human adipose-derived stem cells showed high viability after three days of culture while seeded in each scaffold type, with uniform cell attachment to pore walls. Adipocytes from human whole adipose tissue seeded into scaffolds were found to have similar levels of lipolytic and metabolic function between conditions, in addition to a healthy unilocular morphology. Results indicate that our more environmentally friendly methodology for silk scaffold production is a viable alternative and well suited to soft tissue applications. Full article
Show Figures

Figure 1

12 pages, 23144 KiB  
Article
Construction of ZnO/PCL Antibacterial Coating Potentially for Dental Unit Waterlines
by Min Xing, Haifeng Zhang, Ling Zhang and Wenhao Qian
J. Funct. Biomater. 2023, 14(4), 225; https://doi.org/10.3390/jfb14040225 - 16 Apr 2023
Cited by 6 | Viewed by 2379
Abstract
The formation of bacterial biofilms and the contamination of treatment water within dental unit waterlines can lead to a risk of secondary bacterial infections in immunocompromised patients. Although chemical disinfectants can reduce the contamination of treatment water, they can also cause corrosion damage [...] Read more.
The formation of bacterial biofilms and the contamination of treatment water within dental unit waterlines can lead to a risk of secondary bacterial infections in immunocompromised patients. Although chemical disinfectants can reduce the contamination of treatment water, they can also cause corrosion damage to dental unit waterlines. Considering the antibacterial effect of ZnO, a ZnO-containing coating was prepared on the surface of polyurethane waterlines using polycaprolactone (PCL) with a good film-forming capacity. The ZnO-containing PCL coating improved the hydrophobicity of polyurethane waterlines, thus inhibiting the adhesion of bacteria. Moreover, the continuous slow release of Zn ions endowed polyurethane waterlines with antibacterial activity, thus effectively preventing the formation of bacterial biofilms. Meanwhile, the ZnO-containing PCL coating had good biocompatibility. The present study suggests that ZnO-containing PCL coating can realize a long-term antibacterial effect on the polyurethane waterlines by itself, providing a novel strategy for the manufacture of autonomous antibacterial dental unit waterlines. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

16 pages, 4274 KiB  
Article
Microporous Implants Modified by Bifunctional Hydrogel with Antibacterial and Osteogenic Properties Promote Bone Integration in Infected Bone Defects
by Yiping Pu, Xuecai Lin, Qiang Zhi, Shichong Qiao and Chuangqi Yu
J. Funct. Biomater. 2023, 14(4), 226; https://doi.org/10.3390/jfb14040226 - 16 Apr 2023
Cited by 5 | Viewed by 2490
Abstract
Prosthesis implantation and bone integration under bacterial infection are arduous challenges in clinical practice. It is well known that the reactive oxygen species (ROS) produced by bacterial infection around the bone defects will further hinder bone healing. To solve this problem, we prepared [...] Read more.
Prosthesis implantation and bone integration under bacterial infection are arduous challenges in clinical practice. It is well known that the reactive oxygen species (ROS) produced by bacterial infection around the bone defects will further hinder bone healing. To solve this problem, we prepared a ROS-scavenging hydrogel by cross-linking polyvinyl alcohol and a ROS-responsive linker, N1-(4-boronobenzyl)-N3-(4-boronophenyl)-N1, N1, N3, N3-tetramethylpropane-1, 3-diaminium, to modify the microporous titanium alloy implant. The prepared hydrogel was used as an advanced ROS-scavenging tool to promote bone healing by inhibiting the ROS levels around the implant. Bifunctional hydrogel serving as a drug delivery system can release therapeutic molecules, including vancomycin, to kill bacteria and bone morphogenetic protein-2 to induce bone regeneration and integration. This multifunctional implant system that combines mechanical support and disease microenvironment targeting provides a novel strategy for bone regeneration and integration of implants in infected bone defects. Full article
(This article belongs to the Special Issue Bioactive Elements for Tissue Regeneration)
Show Figures

Figure 1

14 pages, 1305 KiB  
Review
The Use of Specialized Pro-Resolving Mediators in Biomaterial-Based Immunomodulation
by Ana Beatriz Sousa and Judite N. Barbosa
J. Funct. Biomater. 2023, 14(4), 223; https://doi.org/10.3390/jfb14040223 - 15 Apr 2023
Cited by 7 | Viewed by 3766
Abstract
The implantation of a biomaterial will lead to the immediate onset of an acute inflammatory response, which is of key importance in shaping the quality of the repair process. However, the return to homeostasis is critical to prevent a chronic inflammatory response that [...] Read more.
The implantation of a biomaterial will lead to the immediate onset of an acute inflammatory response, which is of key importance in shaping the quality of the repair process. However, the return to homeostasis is critical to prevent a chronic inflammatory response that may impair the healing process. The resolution of the inflammatory response is now recognized as an active and highly regulated process, being described as specialized immunoresolvents that have a fundamental role in the termination of the acute inflammatory response. These mediators collectively coined as specialized pro-resolving mediators (SPMs) are a family of endogenous molecules that include lipoxins (Lx), resolvins (Rv), protectins (PD), maresins (Mar), Cysteinyl-SPMs (Cys-SPMs) and n-3 docosapentaenoic acid-derived SPMs (n-3 DPA-derived SPMs). SPMs have important anti-inflammatory and pro-resolutive actions such as decreasing the recruitment of polymorphonuclear leukocytes (PMNs), inducing the recruitment of anti-inflammatory macrophages, and increasing macrophage clearance of apoptotic cells through a process known as efferocytosis. Over the last years, the trend in biomaterials research has shifted towards the engineering of materials that are able to modulate the inflammatory response and thus stimulate appropriate immune responses, the so-called immunomodulatory biomaterials. These materials should be able to modulate the host immune response with the aim of creating a pro-regenerative microenvironment. In this review, we explore the potential of using of SPMs in the development of new immunomodulatory biomaterials and we propose insights for future research in this field. Full article
(This article belongs to the Special Issue Active Biomedical Materials and Their Applications)
Show Figures

Figure 1

16 pages, 5423 KiB  
Article
Preparation and Characterization of Gluten/SDS/Chitosan Composite Hydrogel Based on Hydrophobic and Electrostatic Interactions
by Guangfeng Li, Ni Lan, Yanling Huang, Chou Mo, Qiaoli Wang, Chaoxi Wu and Yifei Wang
J. Funct. Biomater. 2023, 14(4), 222; https://doi.org/10.3390/jfb14040222 - 14 Apr 2023
Cited by 3 | Viewed by 2873
Abstract
Gluten is a natural byproduct derived from wheat starch, possessing ideal biocompatibility. However, its poor mechanical properties and heterogeneous structure are not suitable for cell adhesion in biomedical applications. To resolve the issues, we prepare novel gluten (G)/sodium lauryl sulfate (SDS)/chitosan (CS) composite [...] Read more.
Gluten is a natural byproduct derived from wheat starch, possessing ideal biocompatibility. However, its poor mechanical properties and heterogeneous structure are not suitable for cell adhesion in biomedical applications. To resolve the issues, we prepare novel gluten (G)/sodium lauryl sulfate (SDS)/chitosan (CS) composite hydrogels by electrostatic and hydrophobic interactions. Specifically, gluten is modified by SDS to give it a negatively charged surface, and then it conjugates with positively charged chitosan to form the hydrogel. In addition, the composite formative process, surface morphology, secondary network structure, rheological property, thermal stability, and cytotoxicity are investigated. Moreover, this work demonstrates that the change can occur in surface hydrophobicity caused by the pH−eading influence of hydrogen bonds and polypeptide chains. Meanwhile, the reversible non−covalent bonding in the networks is beneficial to improving the stability of the hydrogels, which shows a prominent prospect in biomedical engineering. Full article
Show Figures

Figure 1

16 pages, 5899 KiB  
Article
Effects of Topography and PDGF on the Response of Corneal Keratocytes to Fibronectin-Coated Surfaces
by Kevin H. Lam, Tarik Z. Shihabeddin, Jacob A. Awkal, Alex M. Najjar, Miguel Miron-Mendoza, Daniel P. Maruri, Victor D. Varner, W. Matthew Petroll and David W. Schmidtke
J. Funct. Biomater. 2023, 14(4), 217; https://doi.org/10.3390/jfb14040217 - 13 Apr 2023
Cited by 5 | Viewed by 2649
Abstract
During corneal wound healing, corneal keratocytes are exposed to both biophysical and soluble cues that cause them to transform from a quiescent state to a repair phenotype. How keratocytes integrate these multiple cues simultaneously is not well understood. To investigate this process, primary [...] Read more.
During corneal wound healing, corneal keratocytes are exposed to both biophysical and soluble cues that cause them to transform from a quiescent state to a repair phenotype. How keratocytes integrate these multiple cues simultaneously is not well understood. To investigate this process, primary rabbit corneal keratocytes were cultured on substrates patterned with aligned collagen fibrils and coated with adsorbed fibronectin. After 2 or 5 days of culture, keratocytes were fixed and stained to assess changes in cell morphology and markers of myofibroblastic activation by fluorescence microscopy. Initially, adsorbed fibronectin had an activating effect on the keratocytes as evidenced by changes in cell shape, stress fiber formation, and expression of alpha-smooth muscle actin (α-SMA). The magnitude of these effects depended upon substrate topography (i.e., flat substrate vs aligned collagen fibrils) and decreased with culture time. When keratocytes were simultaneously exposed to adsorbed fibronectin and soluble platelet-derived growth factor-BB (PDGF-BB), the cells elongated and had reduced expression of stress fibers and α-SMA. In the presence of PDGF-BB, keratocytes plated on the aligned collagen fibrils elongated in the direction of the fibrils. These results provide new information on how keratocytes respond to multiple simultaneous cues and how the anisotropic topography of aligned collagen fibrils influences keratocyte behavior. Full article
Show Figures

Figure 1

15 pages, 9762 KiB  
Article
Bovine Fibroblast-Derived Extracellular Matrix Promotes the Growth and Preserves the Stemness of Bovine Stromal Cells during In Vitro Expansion
by Kathleen Lee, Anisha Jackson, Nikita John, Ryan Zhang, Derya Ozhava, Mohit Bhatia and Yong Mao
J. Funct. Biomater. 2023, 14(4), 218; https://doi.org/10.3390/jfb14040218 - 13 Apr 2023
Cited by 5 | Viewed by 3502
Abstract
Cultivated meat is a fast-growing research field and an industry with great potential to overcome the limitations of traditional meat production. Cultivated meat utilizes cell culture and tissue engineering technologies to culture a vast number of cells in vitro and grow/assemble them into [...] Read more.
Cultivated meat is a fast-growing research field and an industry with great potential to overcome the limitations of traditional meat production. Cultivated meat utilizes cell culture and tissue engineering technologies to culture a vast number of cells in vitro and grow/assemble them into structures mimicking the muscle tissues of livestock animals. Stem cells with self-renewal and lineage-specific differentiation abilities have been considered one of the key cell sources for cultivated meats. However, the extensive in vitro culturing/expansion of stem cells results in a reduction in their abilities to proliferate and differentiate. Extracellular matrix (ECM) has been used as a culturing substrate to support cell expansion for cell-based therapies in regenerative medicine due to its resemblance to the native microenvironment of cells. In this study, the effect of the ECM on the expansion of bovine umbilical cord stromal cells (BUSC) in vitro was evaluated and characterized. BUSCs with multi-lineage differentiation potentials were isolated from bovine placental tissue. Decellularized ECM prepared from a confluent monolayer of bovine fibroblasts (BF) is free of cellular components but contains major ECM proteins such as fibronectin and type I collagen and ECM-associated growth factors. Expansion of BUSC on ECM for three passages (around three weeks) resulted in about 500-fold amplification, while cells were amplified less than 10-fold when cultured on standard tissue culture plates (TCP). Moreover, the presence of ECM reduced the requirement for serum in the culture medium. Importantly, the cells amplified on ECM retained their differentiation abilities better than cells cultured on TCP. The results of our study support the notion that monolayer cell-derived ECM may be a strategy to expand bovine cells in vitro effectively and efficiently. Full article
Show Figures

Graphical abstract

24 pages, 6420 KiB  
Review
Biomechanical Characteristics and Analysis Approaches of Bone and Bone Substitute Materials
by Yumiao Niu, Tianming Du and Youjun Liu
J. Funct. Biomater. 2023, 14(4), 212; https://doi.org/10.3390/jfb14040212 - 11 Apr 2023
Cited by 48 | Viewed by 7113
Abstract
Bone has a special structure that is both stiff and elastic, and the composition of bone confers it with an exceptional mechanical property. However, bone substitute materials that are made of the same hydroxyapatite (HA) and collagen do not offer the same mechanical [...] Read more.
Bone has a special structure that is both stiff and elastic, and the composition of bone confers it with an exceptional mechanical property. However, bone substitute materials that are made of the same hydroxyapatite (HA) and collagen do not offer the same mechanical properties. It is important for bionic bone preparation to understand the structure of bone and the mineralization process and factors. In this paper, the research on the mineralization of collagen is reviewed in terms of the mechanical properties in recent years. Firstly, the structure and mechanical properties of bone are analyzed, and the differences of bone in different parts are described. Then, different scaffolds for bone repair are suggested considering bone repair sites. Mineralized collagen seems to be a better option for new composite scaffolds. Last, the paper introduces the most common method to prepare mineralized collagen and summarizes the factors influencing collagen mineralization and methods to analyze its mechanical properties. In conclusion, mineralized collagen is thought to be an ideal bone substitute material because it promotes faster development. Among the factors that promote collagen mineralization, more attention should be given to the mechanical loading factors of bone. Full article
Show Figures

Figure 1

14 pages, 2577 KiB  
Article
A Silicon-Based PDMS-PEG Copolymer Microfluidic Chip for Real-Time Polymerase Chain Reaction Diagnosis
by Siyu Yang, Qingyue Xian, Yiteng Liu, Ziyi Zhang, Qi Song, Yibo Gao and Weijia Wen
J. Funct. Biomater. 2023, 14(4), 208; https://doi.org/10.3390/jfb14040208 - 9 Apr 2023
Cited by 9 | Viewed by 4257
Abstract
Polydimethylsiloxane (PDMS) has been widely used to make lab-on-a-chip devices, such as reactors and sensors, for biological research. Real-time nucleic acid testing is one of the main applications of PDMS microfluidic chips due to their high biocompatibility and transparency. However, the inherent hydrophobicity [...] Read more.
Polydimethylsiloxane (PDMS) has been widely used to make lab-on-a-chip devices, such as reactors and sensors, for biological research. Real-time nucleic acid testing is one of the main applications of PDMS microfluidic chips due to their high biocompatibility and transparency. However, the inherent hydrophobicity and excessive gas permeability of PDMS hinder its applications in many fields. This study developed a silicon-based polydimethylsiloxane-polyethylene-glycol (PDMS-PEG) copolymer microfluidic chip, the PDMS-PEG copolymer silicon chip (PPc-Si chip), for biomolecular diagnosis. By adjusting the modifier formula for PDMS, the hydrophilic switch occurred within 15 s after contact with water, resulting in only a 0.8% reduction in transmittance after modification. In addition, we evaluated the transmittance at a wide range of wavelengths from 200 nm to 1000 nm to provide a reference for its optical property study and application in optical-related devices. The improved hydrophilicity was achieved by introducing a large number of hydroxyl groups, which also resulted in excellent bonding strength of PPc-Si chips. The bonding condition was easy to achieve and time-saving. Real-time PCR tests were successfully conducted with higher efficiency and lower non-specific absorption. This chip has a high potential for a wide range of applications in point-of-care tests (POCT) and rapid disease diagnosis. Full article
(This article belongs to the Special Issue Usage of Biopolymers in Medical Applications)
Show Figures

Graphical abstract

12 pages, 3138 KiB  
Article
Hypochlorous Acid-Activated UCNPs-LMB/VQIVYK Multifunctional Nanosystem for Alzheimer’s Disease Treatment
by Luying Qiao, Yang Shen, Guangzhi Li, Guanglei Lv and Chunxia Li
J. Funct. Biomater. 2023, 14(4), 207; https://doi.org/10.3390/jfb14040207 - 8 Apr 2023
Cited by 3 | Viewed by 2006
Abstract
The development of nanosystems, which can photooxygenate amyloid-β (Aβ), detect the Tau protein, and inhibit effectively the Tau aggregation, is increasingly important in the diagnosis and therapy of Alzheimer’s disease (AD). Herein, UCNPs-LMB/VQIVYK (UCNPs: upconversion nanoparticles, LMB: Leucomethylene blue, and VQIVYK: Biocompatible peptide) [...] Read more.
The development of nanosystems, which can photooxygenate amyloid-β (Aβ), detect the Tau protein, and inhibit effectively the Tau aggregation, is increasingly important in the diagnosis and therapy of Alzheimer’s disease (AD). Herein, UCNPs-LMB/VQIVYK (UCNPs: upconversion nanoparticles, LMB: Leucomethylene blue, and VQIVYK: Biocompatible peptide) is designed as a HOCl-controlled released nanosystem for AD synergistic treatment. Under exposure to high levels of HOCl, the released MB from UCNPs-LMB/VQIVYK will produce singlet oxygen (1O2) under red light to depolymerize Aβ aggregation and reduce cytotoxicity. Meanwhile, UCNPs-LMB/VQIVYK can act as an inhibitor to decrease Tau-induced neurotoxicity. Besides, UCNPs-LMB/VQIVYK can be used for upconversion luminescence (UCL) due to its unexceptionable luminescence properties. This HOCl-responsive nanosystem offers a new therapy for AD treatment. Full article
Show Figures

Figure 1

22 pages, 21315 KiB  
Article
Calcium Phosphate Cements Combined with Blood as a Promising Tool for the Treatment of Bone Marrow Lesions
by Maxence Limelette, Claire De Fourmestraux, Christelle Despas, Audrey Lafragette, Joelle Veziers, Yohan Le Guennec, Gwenola Touzot-Jourde, François-Xavier Lefevre, Elise Verron, Jean-Michel Bouler, Bruno Bujoli and Olivier Gauthier
J. Funct. Biomater. 2023, 14(4), 204; https://doi.org/10.3390/jfb14040204 - 7 Apr 2023
Viewed by 2124
Abstract
The solid phase of a commercial calcium phosphate (Graftys® HBS) was combined with ovine or human blood stabilized either with sodium citrate or sodium heparin. The presence of blood delayed the setting reaction of the cement by ca. 7–15 h, depending on [...] Read more.
The solid phase of a commercial calcium phosphate (Graftys® HBS) was combined with ovine or human blood stabilized either with sodium citrate or sodium heparin. The presence of blood delayed the setting reaction of the cement by ca. 7–15 h, depending on the nature of the blood and blood stabilizer. This phenomenon was found to be directly related to the particle size of the HBS solid phase, since prolonged grinding of the latter resulted in a shortened setting time (10–30 min). Even though ca. 10 h were necessary for the HBS blood composite to harden, its cohesion right after injection was improved when compared to the HBS reference as well as its injectability. A fibrin-based material was gradually formed in the HBS blood composite to end-up, after ca. 100 h, with a dense 3D organic network present in the intergranular space, thus affecting the microstructure of the composite. Indeed, SEM analyses of polished cross-sections showed areas of low mineral density (over 10–20 µm) spread in the whole volume of the HBS blood composite. Most importantly, when the two cement formulations were injected in the tibial subchondral cancellous bone in a bone marrow lesion ovine model, quantitative SEM analyses showed a highly significant difference between the HBS reference versus its analogue combined with blood. After a 4-month implantation, histological analyses clearly showed that the HBS blood composite underwent high resorption (remaining cement: ca. 13.1 ± 7.3%) and new bone formation (newly formed bone: 41.8 ± 14.7%). This was in sharp contrast with the case of the HBS reference for which a low resorption rate was observed (remaining cement: 79.0 ± 6.9%; newly formed bone: 8.6 ± 4.8%). This study suggested that the particular microstructure, induced by the use of blood as the HBS liquid phase, favored quicker colonization of the implant and acceleration of its replacement by newly formed bone. For this reason, the HBS blood composite might be worth considering as a potentially suitable material for subchondroplasty. Full article
(This article belongs to the Special Issue Functionalized Biomimetic Calcium Phosphates 2.0)
Show Figures

Figure 1

12 pages, 16716 KiB  
Article
Tropoelastin-Pretreated Exosomes from Adipose-Derived Stem Cells Improve the Synthesis of Cartilage Matrix and Alleviate Osteoarthritis
by Shuo Meng, Cong Tang, Muhai Deng, Jie Yuan, Yanli Fan, Shasha Gao, Yong Feng, Junjun Yang and Cheng Chen
J. Funct. Biomater. 2023, 14(4), 203; https://doi.org/10.3390/jfb14040203 - 6 Apr 2023
Cited by 19 | Viewed by 2894
Abstract
Mesenchymal stem cells (MSCs) have recently been widely used to treat osteoarthritis (OA). Our prior research shows that tropoelastin (TE) increases MSC activity and protects knee cartilage from OA-related degradation. The underlying mechanism might be that TE regulates the paracrine of MSCs. Exosomes [...] Read more.
Mesenchymal stem cells (MSCs) have recently been widely used to treat osteoarthritis (OA). Our prior research shows that tropoelastin (TE) increases MSC activity and protects knee cartilage from OA-related degradation. The underlying mechanism might be that TE regulates the paracrine of MSCs. Exosomes (Exos), the paracrine secretion of MSCs, have been found to protect chondrocytes, reduce inflammation, and preserve the cartilage matrix. In this study, we used Exos derived from TE-pretreated adipose-derived stem cells (ADSCs) (TE-ExoADSCs) as an injection medium, and compared it with Exos derived from unpretreated ADSCs (ExoADSCs). We found that TE-ExoADSCs could effectively enhance the matrix synthesis of chondrocytes in vitro. Moreover, TE pretreatment increased the ability of ADSCs to secrete Exos. In addition, compared with ExoADSCs, TE-ExoADSCs exhibited therapeutic effects in the anterior cruciate ligament transection (ACLT)-induced OA model. Further, we observed that TE altered the microRNA expression in ExoADSCs and identified one differentially upregulated microRNA: miR-451-5p. In conclusion, TE-ExoADSCs helped maintain the chondrocyte phenotype in vitro, and promoted cartilage repair in vivo. These therapeutic effects might be related with the altered expression of miR-451-5p in the ExoADSCs. Thus, the intra-articular delivery of Exos derived from ADSCs with TE pretreatment could be a new approach to treat OA. Full article
Show Figures

Figure 1

16 pages, 6782 KiB  
Article
Microwave-Assisted Incorporation of AgNP into Chitosan–Alginate Hydrogels for Antimicrobial Applications
by Takuma Oe, Duangkamol Dechojarassri, Sachiro Kakinoki, Hideya Kawasaki, Tetsuya Furuike and Hiroshi Tamura
J. Funct. Biomater. 2023, 14(4), 199; https://doi.org/10.3390/jfb14040199 - 4 Apr 2023
Cited by 12 | Viewed by 3523
Abstract
Herein, improving the antibacterial activity of a hydrogel system of sodium alginate (SA) and basic chitosan (CS) using sodium hydrogen carbonate by adding AgNPs was investigated. SA-coated AgNPs produced by ascorbic acid or microwave heating were evaluated for their antimicrobial activity. Unlike ascorbic [...] Read more.
Herein, improving the antibacterial activity of a hydrogel system of sodium alginate (SA) and basic chitosan (CS) using sodium hydrogen carbonate by adding AgNPs was investigated. SA-coated AgNPs produced by ascorbic acid or microwave heating were evaluated for their antimicrobial activity. Unlike ascorbic acid, the microwave-assisted method produced uniform and stable SA-AgNPs with an optimal reaction time of 8 min. Transmission electron microscopy (TEM) confirmed the formation of SA-AgNPs with an average particle size of 9 ± 2 nm. Moreover, UV-vis spectroscopy confirmed the optimal conditions for SA-AgNP synthesis (0.5% SA, 50 mM AgNO3, and pH 9 at 80 °C). Fourier transform infrared (FTIR) spectroscopy confirmed that the –COO group of SA electrostatically interacted with either the Ag+ or –NH3+ of CS. Adding glucono-δ-lactone (GDL) to the mixture of SA-AgNPs/CS resulted in a low pH (below the pKa of CS). An SA-AgNPs/CS gel was formed successfully and retained its shape. This hydrogel exhibited 25 ± 2 mm and 21 ± 1 mm inhibition zones against E. coli and B. subtilis and showed low cytotoxicity. Additionally, the SA-AgNP/CS gel showed higher mechanical strength than SA/CS gels, possibly due to the higher crosslink density. In this work, a novel antibacterial hydrogel system was synthesized via 8 min of microwave heating. Full article
(This article belongs to the Special Issue Biomedical Applications of Chitin and Chitosan-II)
Show Figures

Figure 1

14 pages, 1979 KiB  
Article
Lutein Encapsulated in PLGA–Phospholipid Nano-Carrier Effectively Mitigates Cytokines by Inhibiting Tumor Necrosis Factor TNF-α and Nuclear Factor NF-κB in Mice Retina
by Ranganathan Arunkumar and Vallikannan Baskaran
J. Funct. Biomater. 2023, 14(4), 197; https://doi.org/10.3390/jfb14040197 - 3 Apr 2023
Cited by 5 | Viewed by 2112
Abstract
Lutein, a photo- and thermo-labile macular pigment, prevents the retina from suffering ocular inflammation with its antioxidant and anti-inflammatory activity. However, its biological activity is poor due to poor solubility and bioavailability. Therefore, we developed a PLGA NCs (+PL), (poly (lactic-co-glycolic [...] Read more.
Lutein, a photo- and thermo-labile macular pigment, prevents the retina from suffering ocular inflammation with its antioxidant and anti-inflammatory activity. However, its biological activity is poor due to poor solubility and bioavailability. Therefore, we developed a PLGA NCs (+PL), (poly (lactic-co-glycolic acid) nanocarrier with phospholipid) to improve the biological availability and bioefficacy of lutein in the retina of lipopolysaccharide (LPS)-induced lutein-devoid (LD) mice. The effect of lutein-loaded NCs with/without PL was studied in comparison with micellar lutein. The induction of inflammation by LPS significantly increased the production of nitrites in the LPS-induced group, revealing higher levels of nitric oxide (NO) in the serum (760%) and retina (891%) compared to the control group. Malondialdehyde (MDA) levels in the serum (93%) and retina (205%) of the LPS-induced group were higher compared to the control group. LPS induction resulted in increased protein carbonyls in the serum (481%) and retina (487%) of the LPS group compared to the control group. Further, to conclude, lutein-PLGA NCs (+PL) effectively down-regulated inflammatory complications in the retina. Full article
(This article belongs to the Special Issue Nanostructured Materials/Biomaterials for Healthcare Applications)
Show Figures

Figure 1

17 pages, 1372 KiB  
Review
Current Status and Future Outlook of Additive Manufacturing Technologies for the Reconstruction of the Trachea
by Hwa-Yong Lee and Jin Woo Lee
J. Funct. Biomater. 2023, 14(4), 196; https://doi.org/10.3390/jfb14040196 - 2 Apr 2023
Cited by 7 | Viewed by 3005
Abstract
Tracheal stenosis and defects occur congenitally and in patients who have undergone tracheal intubation and tracheostomy due to long-term intensive care. Such issues may also be observed during tracheal removal during malignant head and neck tumor resection. However, to date, no treatment method [...] Read more.
Tracheal stenosis and defects occur congenitally and in patients who have undergone tracheal intubation and tracheostomy due to long-term intensive care. Such issues may also be observed during tracheal removal during malignant head and neck tumor resection. However, to date, no treatment method has been identified that can simultaneously restore the appearance of the tracheal skeleton while maintaining respiratory function in patients with tracheal defects. Therefore, there is an urgent need to develop a method that can maintain tracheal function while simultaneously reconstructing the skeletal structure of the trachea. Under such circumstances, the advent of additive manufacturing technology that can create customized structures using patient medical image data provides new possibilities for tracheal reconstruction surgery. In this study, the three-dimensional (3D) printing and bioprinting technologies used in tracheal reconstruction are summarized, and various research results related to the reconstruction of mucous membranes, cartilage, blood vessels, and muscle tissue, which are tissues required for tracheal reconstruction, are classified. The prospects for 3D-printed tracheas in clinical studies are also described. This review serves as a guide for the development of artificial tracheas and clinical trials using 3D printing and bioprinting. Full article
Show Figures

Figure 1

18 pages, 5366 KiB  
Article
Nanoscale Polishing Technique of Biomedical Grade NiTi Wire by Advanced MAF Process: Relationship between Surface Roughness and Bacterial Adhesion
by Se Rim Jang, Il Won Suh and Lida Heng
J. Funct. Biomater. 2023, 14(4), 177; https://doi.org/10.3390/jfb14040177 - 23 Mar 2023
Cited by 13 | Viewed by 3056
Abstract
Nitinol (NiTi), an alloy of nickel and titanium, wires are an important biomedical material that has been used in catheter tubes, guidewires, stents, and other surgical instruments. As such wires are temporarily or permanently inserted inside the human body, their surfaces need to [...] Read more.
Nitinol (NiTi), an alloy of nickel and titanium, wires are an important biomedical material that has been used in catheter tubes, guidewires, stents, and other surgical instruments. As such wires are temporarily or permanently inserted inside the human body, their surfaces need to be smoothed and cleaned in order to prevent wear, friction, and adhesion of bacteria. In this study, NiTi wire samples of micro-scale diameters (i.e., Ø 200 μm and Ø 400 μm) were polished by an advanced magnetic abrasive finishing (MAF) process using a nanoscale polishing method. Furthermore, bacterial adhesion (i.e., Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus)) to the initial and final surfaces of NiTi wires were investigated and compared in order to assess the impact of surface roughness on bacterial adhesion to the surfaces of NiTi wires. The finding revealed that the surfaces of NiTi wires were clean and smooth with a lack of particle impurities and toxic components on the final surface polished using the advanced MAF process. The surface roughness Ra values of the Ø 200 μm and Ø 400 μm NiTi wires were smoothly enhanced to 20 nm and 30 nm from the 140 nm and 280 nm initial surface roughness values. Importantly, polishing the surfaces of a biomedical material such as NiTi wire to nano-level roughness can significantly reduce bacterial adhesion on the surface by more than 83.48% in the case of S. aureus, while in the case of E. coli was more than 70.67%. Full article
Show Figures

Figure 1

12 pages, 3639 KiB  
Article
Fluoride Retention in Root Dentin following Surface Coating Material Application
by Katsushi Okuyama, Yasuhiro Matsuda, Hiroko Yamamoto, Kohtaku Suzuki, Kohei Shintani, Takashi Saito, Mikako Hayashi and Yukimichi Tamaki
J. Funct. Biomater. 2023, 14(3), 171; https://doi.org/10.3390/jfb14030171 - 22 Mar 2023
Cited by 2 | Viewed by 2177
Abstract
This study aimed to use an in-air micro-particle-induced X-ray/gamma emission (in-air µPIXE/PIGE) system to evaluate tooth-bound fluoride (T-F) in dentin following the application of fluoride-containing tooth-coating materials. Three fluoride-containing coating materials (PRG Barrier Coat, Clinpro XT varnish, and Fuji IX EXTRA) and a [...] Read more.
This study aimed to use an in-air micro-particle-induced X-ray/gamma emission (in-air µPIXE/PIGE) system to evaluate tooth-bound fluoride (T-F) in dentin following the application of fluoride-containing tooth-coating materials. Three fluoride-containing coating materials (PRG Barrier Coat, Clinpro XT varnish, and Fuji IX EXTRA) and a control were applied to the root dentin surface of human molars (n = 6, total 48 samples). Samples were stored in a remineralizing solution (pH 7.0) for 7 or 28 days and then sectioned into two adjacent slices. One slice of each sample was immersed in 1M potassium hydroxide (KOH) solution for 24 h and rinsed with water for 5 min for the T-F analysis. The other slice did not undergo KOH treatment and was used to analyze the total fluoride content (W-F). The fluoride and calcium distributions were measured in all the slices using an in-air µPIXE/PIGE. Additionally, the amount of fluoride released from each material was measured. Clinpro XT varnish demonstrated the highest fluoride release among all the materials and tended to show high W-F and T-F and lower T-F/W-F ratios. Our study demonstrates that a high fluoride-releasing material shows high fluoride distribution into the tooth structure and low conversion from fluoride uptake by tooth-bound fluoride. Full article
(This article belongs to the Special Issue State of the Art in Dental Materials)
Show Figures

Figure 1

13 pages, 3532 KiB  
Article
Can Zeolite-Supporting Acridines Boost Their Anticancer Performance?
by Maja Ranković, Anka Jevremović, Aleksandra Janošević Ležaić, Aleksandar Arsenijević, Jelena Rupar, Vladimir Dobričić, Bojana Nedić Vasiljević, Nemanja Gavrilov, Danica Bajuk-Bogdanović and Maja Milojević-Rakić
J. Funct. Biomater. 2023, 14(3), 173; https://doi.org/10.3390/jfb14030173 - 22 Mar 2023
Cited by 4 | Viewed by 2501
Abstract
Acridine and its derivatives (9-chloroacridine and 9-aminoacridine) are investigated here, supported on FAU type zeolite Y, as a delivery system of anticancer agents. FTIR/Raman spectroscopy and electron microscopy revealed successful drug loading on the zeolite surface, while spectrofluorimetry was employed for drug quantification. [...] Read more.
Acridine and its derivatives (9-chloroacridine and 9-aminoacridine) are investigated here, supported on FAU type zeolite Y, as a delivery system of anticancer agents. FTIR/Raman spectroscopy and electron microscopy revealed successful drug loading on the zeolite surface, while spectrofluorimetry was employed for drug quantification. The effects of the tested compounds on cell viability were evaluated using in vitro methylthiazol-tetrazolium (MTT) colorimetric technique against human colorectal carcinoma (cell line HCT-116) and MRC-5 fibroblasts. Zeolite structure remained unchanged during homogeneous drug impregnation with achieved drug loadings in the 18–21 mg/g range. The highest drug release, in the µM concentration range, with favourable kinetics was established for zeolite-supported 9-aminoacridine. The acridine delivery via zeolite carrier is viewed in terms of solvation energy and zeolite adsorption sites. The cytotoxic effect of supported acridines on HCT-116 cells reveals that the zeolite carrier improves toxicity, while the highest efficiency is displayed by zeolite-impregnated 9-aminoacridine. The 9-aminoacridine delivery via zeolite carrier favours healthy tissue preservation while accompanying increased toxicity toward cancer cells. Cytotoxicity results are well correlated with theoretical modelling and release study, providing promising results for applicative purposes. Full article
(This article belongs to the Special Issue Nanomaterials and Their Biomedical Applications)
Show Figures

Graphical abstract

24 pages, 4499 KiB  
Article
Functionalized Halloysite Nanotubes as Potential Drug Carriers
by Ewa Stodolak-Zych, Alicja Rapacz-Kmita, Marcin Gajek, Agnieszka Różycka, Magdalena Dudek and Stanisława Kluska
J. Funct. Biomater. 2023, 14(3), 167; https://doi.org/10.3390/jfb14030167 - 21 Mar 2023
Cited by 8 | Viewed by 2210
Abstract
The aim of the work was to examine the possibility of using modified halloysite nanotubes as a gentamicin carrier and to determine the usefulness of the modification in terms of the effect on the amount of the drug attached, its release time, but [...] Read more.
The aim of the work was to examine the possibility of using modified halloysite nanotubes as a gentamicin carrier and to determine the usefulness of the modification in terms of the effect on the amount of the drug attached, its release time, but also on the biocidal properties of the carriers. In order to fully examine the halloysite in terms of the possibility of gentamicin incorporating, a number of modifications of the native halloysite were carried out prior to gentamicin intercalation with the use of sodium alkali, sulfuric and phosphoric acids, curcumin and the process of delamination of nanotubes (expanded halloysite) with ammonium persulfate in sulfuric acid. Gentamicin was added to unmodified and modified halloysite in an amount corresponding to the cation exchange capacity of pure halloysite from the Polish Dunino deposit, which was the reference sample for all modified carriers. The obtained materials were tested to determine the effect of surface modification and their interaction with the introduced antibiotic on the biological activity of the carrier, kinetics of drug release, as well as on the antibacterial activity against Escherichia coli Gram-negative bacteria (reference strain). For all materials, structural changes were examined using infrared spectroscopy (FTIR) and X-ray diffraction (XRD); thermal differential scanning calorimetry with thermogravimetric analysis (DSC/TG) was performed as well. The samples were also observed for morphological changes after modification and drug activation by transmission electron microscopy (TEM). The conducted tests clearly show that all samples of halloysite intercalated with gentamicin showed high antibacterial activity, with the highest antibacterial activity for the sample modified with sodium hydroxide and intercalated with the drug. It was found that the type of halloysite surface modification has a significant effect on the amount of gentamicin intercalated and then released into the surrounding environment but does not significantly affect its ability to further influence drug release over time. The highest amount of drug released among all intercalated samples was recorded for halloysite modified with ammonium persulfate (real loading efficiency above 11%), for which high antibacterial activity was found after surface modification, before drug intercalation. It is also worth noting that intrinsic antibacterial activity was found for non-drug-intercalated materials after surface functionalization with phosphoric acid (V) and ammonium persulfate in the presence of sulfuric acid (V). Full article
(This article belongs to the Special Issue Biomaterials for Drug Delivery)
Show Figures

Graphical abstract

25 pages, 5952 KiB  
Review
Doped Carbon Quantum Dots Reinforced Hydrogels for Sustained Delivery of Molecular Cargo
by Shweta Kanungo, Neeta Gupta, Reena Rawat, Bhawana Jain, Aruna Solanki, Ashutosh Panday, P. Das and S. Ganguly
J. Funct. Biomater. 2023, 14(3), 166; https://doi.org/10.3390/jfb14030166 - 20 Mar 2023
Cited by 19 | Viewed by 4454
Abstract
Hydrogels have emerged as important soft materials with numerous applications in fields including biomedicine, biomimetic smart materials, and electrochemistry. Because of their outstanding photo-physical properties and prolonged colloidal stability, the serendipitous findings of carbon quantum dots (CQDs) have introduced a new topic of [...] Read more.
Hydrogels have emerged as important soft materials with numerous applications in fields including biomedicine, biomimetic smart materials, and electrochemistry. Because of their outstanding photo-physical properties and prolonged colloidal stability, the serendipitous findings of carbon quantum dots (CQDs) have introduced a new topic of investigation for materials scientists. CQDs confined polymeric hydrogel nanocomposites have emerged as novel materials with integrated properties of the individual constituents, resulting in vital uses in the realm of soft nanomaterials. Immobilizing CQDs within hydrogels has been shown to be a smart tactic for preventing the aggregation-caused quenching effect and also for manipulating the characteristics of hydrogels and introducing new properties. The combination of these two very different types of materials results in not only structural diversity but also significant improvements in many property aspects, leading to novel multifunctional materials. This review covers the synthesis of doped CQDs, different fabrication techniques for nanostructured materials made of CQDs and polymers, as well as their applications in sustained drug delivery. Finally, a brief overview of the present market and future perspectives are discussed. Full article
(This article belongs to the Special Issue Advances in Multifunctional Hydrogels for Biomedical Application)
Show Figures

Figure 1

21 pages, 3653 KiB  
Article
Ketoprofen-Based Polymer-Drug Nanoparticles Provide Anti-Inflammatory Properties to HA/Collagen Hydrogels
by Norbert Halfter, Eva Espinosa-Cano, Gloria María Pontes-Quero, Rosa Ana Ramírez-Jiménez, Christiane Heinemann, Stephanie Möller, Matthias Schnabelrauch, Hans-Peter Wiesmann, Vera Hintze and Maria Rosa Aguilar
J. Funct. Biomater. 2023, 14(3), 160; https://doi.org/10.3390/jfb14030160 - 17 Mar 2023
Cited by 10 | Viewed by 2791
Abstract
Current limitations of wound dressings for treating chronic wounds require the development of novel approaches. One of these is the immune-centered approach, which aims to restore the pro-regenerative and anti-inflammatory properties of macrophages. Under inflammatory conditions, ketoprofen nanoparticles (KT NPs) can reduce pro-inflammatory [...] Read more.
Current limitations of wound dressings for treating chronic wounds require the development of novel approaches. One of these is the immune-centered approach, which aims to restore the pro-regenerative and anti-inflammatory properties of macrophages. Under inflammatory conditions, ketoprofen nanoparticles (KT NPs) can reduce pro-inflammatory markers of macrophages and increase anti-inflammatory cytokines. To assess their suitability as part of wound dressings, these NPs were combined with hyaluronan (HA)/collagen-based hydro- (HGs) and cryogels (CGs). Different HA and NP concentrations and loading techniques for NP incorporation were used. The NP release, gel morphology, and mechanical properties were studied. Generally, colonialization of the gels with macrophages resulted in high cell viability and proliferation. Furthermore, direct contact of the NPs to the cells reduced the level of nitric oxide (NO). The formation of multinucleated cells on the gels was low and further decreased by the NPs. For the HGs that produced the highest reduction in NO, extended ELISA studies showed reduced levels of the pro-inflammatory markers PGE2, IL-12 p40, TNF-α, and IL-6. Thus, HA/collagen-based gels containing KT NPs may represent a novel therapeutic approach for treating chronic wounds. Whether effects observed in vitro translate into a favorable profile on skin regeneration in vivo will require rigorous testing. Full article
Show Figures

Graphical abstract

16 pages, 3217 KiB  
Article
Chemical and Structural Assessment of New Dental Composites with Graphene Exposed to Staining Agents
by Marioara Moldovan, Diana Dudea, Stanca Cuc, Codruta Sarosi, Doina Prodan, Ioan Petean, Gabriel Furtos, Andrei Ionescu and Nicoleta Ilie
J. Funct. Biomater. 2023, 14(3), 163; https://doi.org/10.3390/jfb14030163 - 17 Mar 2023
Cited by 10 | Viewed by 2646
Abstract
Among the newest trends in dental composites is the use of graphene oxide (GO) nanoparticles to assure better cohesion of the composite and superior properties. Our research used GO to enhance several hydroxyapatite (HA) nanofiller distribution and cohesion in three experimental composites CC, [...] Read more.
Among the newest trends in dental composites is the use of graphene oxide (GO) nanoparticles to assure better cohesion of the composite and superior properties. Our research used GO to enhance several hydroxyapatite (HA) nanofiller distribution and cohesion in three experimental composites CC, GS, GZ exposed to coffee and red wine staining environments. The presence of silane A-174 on the filler surface was evidenced by FT-IR spectroscopy. Experimental composites were characterized through color stability after 30 days of staining in red wine and coffee, sorption and solubility in distilled water and artificial saliva. Surface properties were measured by optical profilometry and scanning electron microscopy, respectively, and antibacterial properties wer e assessed against Staphylococcus aureus and Escherichia coli. A colour stability test revealed the best results for GS, followed by GZ, with less stability for CC. Topographical and morphological aspects revealed a synergism between GZ sample nanofiller components that conducted to the lower surface roughness, with less in the GS sample. However, surface roughness variation due to the stain was affected less than colour stability at the macroscopic level. Antibacterial testing revealed good effect against Staphylococcus aureus and a moderate effect against Escherichia coli. Full article
Show Figures

Figure 1

14 pages, 3755 KiB  
Article
Realizing Both Antibacterial Activity and Cytocompatibility in Silicocarnotite Bioceramic via Germanium Incorporation
by Yingqi Ji, Shun Yang, Jian Sun and Congqin Ning
J. Funct. Biomater. 2023, 14(3), 154; https://doi.org/10.3390/jfb14030154 - 14 Mar 2023
Cited by 10 | Viewed by 2398
Abstract
The treatment of infective or potentially infectious bone defects is a critical problem in the orthopedic clinic. Since bacterial activity and cytocompatibility are always contrary factors, it is hard to have them both in one material. The development of bioactive materials with a [...] Read more.
The treatment of infective or potentially infectious bone defects is a critical problem in the orthopedic clinic. Since bacterial activity and cytocompatibility are always contrary factors, it is hard to have them both in one material. The development of bioactive materials with a good bacterial character and without sacrificing biocompatibility and osteogenic activity, is an interesting and valuable research topic. In the present work, the antimicrobial characteristic of germanium, GeO2 was used to enhance the antibacterial properties of silicocarnotite (Ca5(PO4)2SiO4, CPS). In addition, its cytocompatibility was also investigated. The results demonstrated that Ge–CPS can effectively inhibit the proliferation of both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and it showed no cytotoxicity to rat bone marrow-derived mesenchymal stem cells (rBMSCs). In addition, as the bioceramic degraded, a sustainable release of germanium could be achieved, ensuring long-term antibacterial activity. The results indicated that Ge–CPS has excellent antibacterial activity compared with pure CPS, while no obvious cytotoxicity was observed, which could make it a promising candidate for the bone repair of infected bone defects. Full article
Show Figures

Figure 1

15 pages, 3843 KiB  
Article
Anti-Inflammatory Salidroside Delivery from Chitin Hydrogels for NIR-II Image-Guided Therapy of Atopic Dermatitis
by Shengnan He, Fang Xie, Wuyue Su, Haibin Luo, Deliang Chen, Jie Cai and Xuechuan Hong
J. Funct. Biomater. 2023, 14(3), 150; https://doi.org/10.3390/jfb14030150 - 8 Mar 2023
Cited by 7 | Viewed by 3202
Abstract
Atopic dermatitis (AD) is the most common heterogeneous skin disease. Currently, effective primary prevention approaches that hamper the occurrence of mild to moderate AD have not been reported. In this work, the quaternized β-chitin dextran (QCOD) hydrogel was adopted as a topical carrier [...] Read more.
Atopic dermatitis (AD) is the most common heterogeneous skin disease. Currently, effective primary prevention approaches that hamper the occurrence of mild to moderate AD have not been reported. In this work, the quaternized β-chitin dextran (QCOD) hydrogel was adopted as a topical carrier system for topical and transdermal delivery of salidroside for the first time. The cumulative release value of salidroside reached ~82% after 72 h at pH 7.4, while in vitro drug release experiments proved that QCOD@Sal (QCOD@Salidroside) has a good, sustained release effect, and the effect of QCOD@Sal on atopic dermatitis mice was further investigated. QCOD@Sal could promote skin repair or AD by modulating inflammatory factors TNF-α and IL-6 without skin irritation. The present study also evaluated NIR-II image-guided therapy (NIR-II, 1000–1700 nm) of AD using QCOD@Sal. The treatment process of AD was monitored in real-time, and the extent of skin lesions and immune factors were correlated with the NIR-II fluorescence signals. These attractive results provide a new perspective for designing NIR-II probes for NIR-II imaging and image-guided therapy with QCOD@Sal. Full article
(This article belongs to the Special Issue Biomedical Applications of Chitin and Chitosan-II)
Show Figures

Graphical abstract

17 pages, 2913 KiB  
Article
Antimicrobial Effect of the Amniotic Membrane Isolated and Associated with Photodynamic Therapy
by Amanda Cerquearo Rodrigues dos Santos, Guilherme Rodrigues Teodoro, Juliana Ferreira-Strixino and Luciana Barros Sant’Anna
J. Funct. Biomater. 2023, 14(3), 151; https://doi.org/10.3390/jfb14030151 - 8 Mar 2023
Cited by 1 | Viewed by 2367
Abstract
Microbial control through alternative therapies, such as the amniotic membrane (AM) and antimicrobial photodynamic therapy (aPDT), has been gaining prominence with the advancement of bacterial resistance to conventional treatments. This study aimed to evaluate the antimicrobial effect of AM isolated and associated with [...] Read more.
Microbial control through alternative therapies, such as the amniotic membrane (AM) and antimicrobial photodynamic therapy (aPDT), has been gaining prominence with the advancement of bacterial resistance to conventional treatments. This study aimed to evaluate the antimicrobial effect of AM isolated and associated with aPDT using the PHTALOX® as a photosensitizer (PS) against Staphylococcus aureus and Pseudomonas aeruginosa biofilms. The groups studied were: C+; L; AM; AM+L; AM+PHTX; and AM+aPDT. The irradiation parameters were 660 nm, 50 J.cm−2, and 30 mW.cm−2. Two independent microbiological experiments were carried out in triplicate, and the results were analyzed by CFU/mL counting and a metabolic activity test, both statistically analyzed (p < 0.05). The integrity of the AM was verified after the treatments by a scanning electron microscope (SEM). The groups AM, AM+PHTX, and, mainly, AM+aPDT showed a statistical difference when compared to C+ regarding the decrease in CFU/mL and metabolic activity. SEM analysis showed significant morphological alterations in the AM+PHTX and AM+aPDT groups. The treatments with AM isolated or associated with PHTALOX® were adequate. The association had potentiated the biofilm effect, and the morphological differences presented by AM after treatment did not hinder its antimicrobial effect, encouraging its use in biofilm formation locals. Full article
(This article belongs to the Special Issue Antibacterial Biomaterials)
Show Figures

Figure 1

13 pages, 5004 KiB  
Article
Characterization of Cyclic Olefin Copolymers for Insulin Reservoir in an Artificial Pancreas
by Norma Mallegni, Mario Milazzo, Caterina Cristallini, Niccoletta Barbani, Giulia Fredi, Andrea Dorigato, Patrizia Cinelli and Serena Danti
J. Funct. Biomater. 2023, 14(3), 145; https://doi.org/10.3390/jfb14030145 - 4 Mar 2023
Cited by 4 | Viewed by 3159
Abstract
Type-1 diabetes is one of the most prevalent metabolic disorders worldwide. It results in a significant lack of insulin production by the pancreas and the ensuing hyperglycemia, which needs to be regulated through a tailored administration of insulin throughout the day. Recent studies [...] Read more.
Type-1 diabetes is one of the most prevalent metabolic disorders worldwide. It results in a significant lack of insulin production by the pancreas and the ensuing hyperglycemia, which needs to be regulated through a tailored administration of insulin throughout the day. Recent studies have shown great advancements in developing an implantable artificial pancreas. However, some improvements are still required, including the optimal biomaterials and technologies to produce the implantable insulin reservoir. Here, we discuss the employment of two types of cyclic olefin copolymers (Topas 5013L-10 and Topas 8007S-04) for an insulin reservoir fabrication. After a preliminary thermomechanical analysis, Topas 8007S-04 was selected as the best material to fabricate a 3D-printed insulin reservoir due to its higher strength and lower glass transition temperature (Tg). Fiber deposition modeling was used to manufacture a reservoir-like structure, which was employed to assess the ability of the material to prevent insulin aggregation. Although the surface texture presents a localized roughness, the ultraviolet analysis did not detect any significant insulin aggregation over a timeframe of 14 days. These interesting results make Topas 8007S-04 cyclic olefin copolymer a potential candidate biomaterial for fabricating structural components in an implantable artificial pancreas. Full article
(This article belongs to the Special Issue Synthetic Polymers for the Delivery of Vaccines and Therapeutics)
Show Figures

Figure 1

26 pages, 3895 KiB  
Review
Tumor Microenvironment Regulation and Cancer Targeting Therapy Based on Nanoparticles
by Shulan Han, Yongjie Chi, Zhu Yang, Juan Ma and Lianyan Wang
J. Funct. Biomater. 2023, 14(3), 136; https://doi.org/10.3390/jfb14030136 - 28 Feb 2023
Cited by 10 | Viewed by 4244
Abstract
Although we have made remarkable achievements in cancer awareness and medical technology, there are still tremendous increases in cancer incidence and mortality. However, most anti-tumor strategies, including immunotherapy, show low efficiency in clinical application. More and more evidence suggest that this low efficacy [...] Read more.
Although we have made remarkable achievements in cancer awareness and medical technology, there are still tremendous increases in cancer incidence and mortality. However, most anti-tumor strategies, including immunotherapy, show low efficiency in clinical application. More and more evidence suggest that this low efficacy may be closely related to the immunosuppression of the tumor microenvironment (TME). The TME plays a significant role in tumorigenesis, development, and metastasis. Therefore, it is necessary to regulate the TME during antitumor therapy. Several strategies are developing to regulate the TME as inhibiting tumor angiogenesis, reversing tumor associated macrophage (TAM) phenotype, removing T cell immunosuppression, and so on. Among them, nanotechnology shows great potential for delivering regulators into TME, which further enhance the antitumor therapy efficacy. Properly designed nanomaterials can carry regulators and/or therapeutic agents to eligible locations or cells to trigger specific immune response and further kill tumor cells. Specifically, the designed nanoparticles could not only directly reverse the primary TME immunosuppression, but also induce effective systemic immune response, which would prevent niche formation before metastasis and inhibit tumor recurrence. In this review, we summarized the development of nanoparticles (NPs) for anti-cancer therapy, TME regulation, and tumor metastasis inhibition. We also discussed the prospect and potential of nanocarriers for cancer therapy. Full article
Show Figures

Graphical abstract

16 pages, 18578 KiB  
Article
Response of Human Gingival Fibroblasts and Porphyromonas gingivalis to UVC-Activated Titanium Surfaces
by Yin Wen, Hao Dong, Jiating Lin, Xianxian Zhuang, Ruoting Xian, Ping Li and Shaobing Li
J. Funct. Biomater. 2023, 14(3), 137; https://doi.org/10.3390/jfb14030137 - 28 Feb 2023
Cited by 5 | Viewed by 3229
Abstract
Ultraviolet (UV) photofunctionalization has been demonstrated to synergistically improve the osteoblast response and reduce biofilm formation on titanium (Ti) surfaces. However, it remains obscure how photofunctionalization affects soft tissue integration and microbial adhesion on the transmucosal part of a dental implant. This study [...] Read more.
Ultraviolet (UV) photofunctionalization has been demonstrated to synergistically improve the osteoblast response and reduce biofilm formation on titanium (Ti) surfaces. However, it remains obscure how photofunctionalization affects soft tissue integration and microbial adhesion on the transmucosal part of a dental implant. This study aimed to investigate the effect of UVC (100–280 nm) pretreatment on the response of human gingival fibroblasts (HGFs) and Porphyromonas gingivalis (P. g.) to Ti-based implant surfaces. The smooth and anodized nano-engineered Ti-based surfaces were triggered by UVC irradiation, respectively. The results showed that both smooth and nano-surfaces acquired super hydrophilicity without structural alteration after UVC photofunctionalization. UVC-activated smooth surfaces enhanced the adhesion and proliferation of HGFs compared to the untreated smooth ones. Regarding the anodized nano-engineered surfaces, UVC pretreatment weakened the fibroblast attachment but had no adverse effects on proliferation and the related gene expression. Additionally, both Ti-based surfaces could effectively inhibit P. g. adhesion after UVC irradiation. Therefore, the UVC photofunctionalization could be more potentially favorable to synergistically improve the fibroblast response and inhibit P. g. adhesion on the smooth Ti-based surfaces. Full article
Show Figures

Figure 1

15 pages, 4939 KiB  
Article
Titanium-Enriched Medium Promotes Environment-Induced Epigenetic Machinery Changes in Human Endothelial Cells
by Célio Júnior da C. Fernandes, Rodrigo A. Foganholi da Silva, Patrícia F. Wood, Marcel Rodrigues Ferreira, Gerson S. de Almeida, Julia Ferreira de Moraes, Fábio J. Bezerra and Willian F. Zambuzzi
J. Funct. Biomater. 2023, 14(3), 131; https://doi.org/10.3390/jfb14030131 - 27 Feb 2023
Cited by 3 | Viewed by 2000
Abstract
It is important to understand whether endothelial cells are epigenetically affected by titanium-enriched media when angiogenesis is required during bone development and it is expected to be recapitulated during osseointegration of biomaterials. To better address this issue, titanium-enriched medium was obtained from incubation [...] Read more.
It is important to understand whether endothelial cells are epigenetically affected by titanium-enriched media when angiogenesis is required during bone development and it is expected to be recapitulated during osseointegration of biomaterials. To better address this issue, titanium-enriched medium was obtained from incubation of titanium discs for up to 24 h as recommended by ISO 10993-5:2016, and further used to expose human umbilical vein endothelial cells (HUVECs) for up to 72 h, when the samples were properly harvested to allow molecular analysis and epigenetics. In general, our data show an important repertoire of epigenetic players in endothelial cells responding to titanium, reinforcing protein related to the metabolism of acetyl and methyl groups, as follows: Histone deacetylases (HDACs) and NAD-dependent deacetylase sirtuin-1 (Sirt1), DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) methylcytosine dioxygenases, which in conjunction culminate in driving chromatin condensation and the methylation profile of DNA strands, respectively. Taking our data into consideration, HDAC6 emerges as important player of this environment-induced epigenetic mechanism in endothelial cells, while Sirt1 is required in response to stimulation of reactive oxygen species (ROS) production, as its modulation is relevant to vasculature surrounding implanted devices. Collectively, all these findings support the hypothesis that titanium keeps the surrounding microenvironment dynamically active and so affects the performance of endothelial cells by modulating epigenetics. Specifically, this study shows the relevance of HDAC6 as a player in this process, possibly correlated with the cytoskeleton rearrangement of those cells. Furthermore, as those enzymes are druggable, it opens new perspectives to consider the use of small molecules to modulate their activities as a biotechnological tool in order to improve angiogenesis and accelerate bone growth with benefits of a fast recovery time for patients. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

14 pages, 5162 KiB  
Article
Functionalization of a Cortical Membrane with a Photodynamic Protocol
by Tania Vanessa Pierfelice, Emira D’Amico, Simonetta D’Ercole, Stefania Lepore, Adriano Piattelli, Antonio Barone, Giovanna Iezzi and Morena Petrini
J. Funct. Biomater. 2023, 14(3), 133; https://doi.org/10.3390/jfb14030133 - 27 Feb 2023
Cited by 2 | Viewed by 1865
Abstract
Guided bone regeneration (GBR) comprehends the application of membranes to drive bone healing and to exclude non-osteogenic tissues from interfering with bone regeneration. However, the membranes may be exposed to bacterial attack, with the risk of failure of the GBR. Recently, an antibacterial [...] Read more.
Guided bone regeneration (GBR) comprehends the application of membranes to drive bone healing and to exclude non-osteogenic tissues from interfering with bone regeneration. However, the membranes may be exposed to bacterial attack, with the risk of failure of the GBR. Recently, an antibacterial photodynamic protocol (ALAD-PDT) based on a gel with 5% 5-aminolevulinic acid incubated for 45 min and irradiated for 7 min by a LED light at 630 nm, also showed a pro-proliferative effect on human fibroblasts and osteoblasts. The present study hypothesized that the functionalization of a porcine cortical membrane (soft-curved lamina, OsteoBiol) with ALAD-PDT might promote its osteoconductive properties. TEST 1 aimed to verify the response of osteoblasts seeded on lamina with respect to the plate surface (CTRL). TEST 2 aimed to investigate the effects of ALAD-PDT on the osteoblasts cultured on the lamina. SEM analyses were performed to study the topographical characteristics of the membrane surface, the adhesion, and the morphology of cells at 3 days. The viability was assessed at 3 days, the ALP activity at 7 days, and calcium deposition at 14 days. Results showed the porous surface of the lamina and the increase in cell attachment of osteoblasts with respect to controls. The proliferation, the ALP, and bone mineralization activity of osteoblasts seeded on lamina resulted in being significantly higher (p < 0.0001) than controls. Results also showed an additional significative enhancement (p < 0.0001) in the proliferative rate in ALP and calcium deposition after applying ALAD-PDT. In conclusion, the functionalization of the cortical membranes cultured with osteoblasts with the ALAD-PDT improved their osteoconductive properties. Full article
(This article belongs to the Special Issue Biomaterials and Bioengineering in Dentistry)
Show Figures

Graphical abstract

14 pages, 4910 KiB  
Article
Ce-MBGs Loaded with Gentamicin: Characterization and In Vitro Evaluation
by Francesca Fraulini, Stefano Raimondi, Francesco Candeliere, Raffaella Ranieri, Alfonso Zambon and Gigliola Lusvardi
J. Funct. Biomater. 2023, 14(3), 129; https://doi.org/10.3390/jfb14030129 - 26 Feb 2023
Cited by 10 | Viewed by 2164
Abstract
Mesoporous Bioactive Glasses (MBGs) are biomaterials widely used in tissue engineering, particularly for hard tissue regeneration. One of the most frequent postoperative complications following a biomaterial surgical implant is a bacterial infection, which usually requires treatment by the systemic administration of drugs (e.g., [...] Read more.
Mesoporous Bioactive Glasses (MBGs) are biomaterials widely used in tissue engineering, particularly for hard tissue regeneration. One of the most frequent postoperative complications following a biomaterial surgical implant is a bacterial infection, which usually requires treatment by the systemic administration of drugs (e.g., antibiotics). In order to develop biomaterials with antibiotic properties, we investigated cerium-doped MBGs (Ce-MBGs) as in situ-controlled drug delivery systems (DDSs) of gentamicin (Gen), a wide spectrum antibiotic commonly employed against bacteria responsible of postoperative infections. Here we report the optimization of Gen loading on MBGs and the evaluation of the antibacterial properties and of retention of bioactivity and antioxidant properties of the resulting materials. The Gen loading (up to 7%) was found to be independent from cerium content, and the optimized Gen-loaded Ce-MBGs retain significant bioactivity and antioxidant properties. The antibacterial efficacy was verified up to 10 days of controlled release. These properties make Gen-loaded Ce-MBGs interesting candidates for simultaneous hard tissue regeneration and in situ antibiotic release. Full article
(This article belongs to the Special Issue Bioactive Glasses in Medical Applications)
Show Figures

Figure 1

20 pages, 10274 KiB  
Article
Effectiveness of BMP-2 and PDGF-BB Adsorption onto a Collagen/Collagen-Magnesium-Hydroxyapatite Scaffold in Weight-Bearing and Non-Weight-Bearing Osteochondral Defect Bone Repair: In Vitro, Ex Vivo and In Vivo Evaluation
by Jietao Xu, Shorouk Fahmy-Garcia, Marinus A. Wesdorp, Nicole Kops, Lucia Forte, Claudio De Luca, Massimiliano Maraglino Misciagna, Laura Dolcini, Giuseppe Filardo, Margot Labberté, Karin Vancíková, Joeri Kok, Bert van Rietbergen, Joachim Nickel, Eric Farrell, Pieter A. J. Brama and Gerjo J. V. M. van Osch
J. Funct. Biomater. 2023, 14(2), 111; https://doi.org/10.3390/jfb14020111 - 16 Feb 2023
Cited by 16 | Viewed by 3633
Abstract
Despite promising clinical results in osteochondral defect repair, a recently developed bi-layered collagen/collagen-magnesium-hydroxyapatite scaffold has demonstrated less optimal subchondral bone repair. This study aimed to improve the bone repair potential of this scaffold by adsorbing bone morphogenetic protein 2 (BMP-2) and/or platelet-derived growth [...] Read more.
Despite promising clinical results in osteochondral defect repair, a recently developed bi-layered collagen/collagen-magnesium-hydroxyapatite scaffold has demonstrated less optimal subchondral bone repair. This study aimed to improve the bone repair potential of this scaffold by adsorbing bone morphogenetic protein 2 (BMP-2) and/or platelet-derived growth factor-BB (PDGF-BB) onto said scaffold. The in vitro release kinetics of BMP-2/PDGF-BB demonstrated that PDGF-BB was burst released from the collagen-only layer, whereas BMP-2 was largely retained in both layers. Cell ingrowth was enhanced by BMP-2/PDFG-BB in a bovine osteochondral defect ex vivo model. In an in vivo semi-orthotopic athymic mouse model, adding BMP-2 or PDGF-BB increased tissue repair after four weeks. After eight weeks, most defects were filled with bone tissue. To further investigate the promising effect of BMP-2, a caprine bilateral stifle osteochondral defect model was used where defects were created in weight-bearing femoral condyle and non-weight-bearing trochlear groove locations. After six months, the adsorption of BMP-2 resulted in significantly less bone repair compared with scaffold-only in the femoral condyle defects and a trend to more bone repair in the trochlear groove. Overall, the adsorption of BMP-2 onto a Col/Col-Mg-HAp scaffold reduced bone formation in weight-bearing osteochondral defects, but not in non-weight-bearing osteochondral defects. Full article
(This article belongs to the Special Issue Women in Science: Functional Biomaterials)
Show Figures

Graphical abstract

Back to TopTop