Coordination Complexes for Dye-Sensitized Solar Cells (DSCs)

Message from the Collection Editor

Dear Colleagues,

The Grätzel dye-sensitized solar cell (DSC) was developed in the 1990s and converts solar into electrical energy. Grätzel’s breakthrough use of sintered nanoparticles of the semiconductor has been followed by the development of a myriad of sensitizers. The vast majority of investigations are focused on n-type DSCs. However, much work is still needed to improve the performances of p-type DSCs. State-of-the-art dyes encompass ruthenium complexes, organic and zinc(II) porphyrin-based dyes with the best conversion efficiencies reaching ~11–14%. Copper(I)-based dyes are seen as sustainable alternatives to ruthenium-containing sensitizers and, with the aid of co-sensitization using an organic dye, have been shown to achieve efficiencies of up to ~65% that of the benchmark ruthenium(II) sensitizer N719. For p-type DSCs, cyclometallated ruthenium dyes show promise, and an emerging family of iridium-containing dyes has recently entered the field. This Special Issue aims to highlight the variety and importance of coordination complexes as sensitizers in DSCs.

Prof. Dr. Catherine E. Housecroft
Message from the Editor-in-Chief

Inorganic chemistry remains a lynchpin of modern chemistry, not only embracing the function and reactivity of combinations of most elements of the periodic table, but also providing a footing for studies of materials, catalysts, drugs, fuels and industrial chemicals. Arguably, the role and reach of inorganics in society have never been as great as today. Adventurous research at the heart and at the extremes of inorganic chemistry is vital to further advances and Inorganics offers authors the opportunity to publish exciting new research in an open access format.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: Indexed in the Emerging Sources Citation Index (ESCI - Web of Science) and in Scopus.

Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 17.3 days after submission; acceptance to publication is undertaken in 4.9 days (median values for papers published in this journal in the second half of 2018).

Contact Us

Inorganics
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland
Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
www.mdpi.com
inorganics@mdpi.com
@inorganics_MDPI