ijms-logo

Journal Browser

Journal Browser

Topical Collection "Feature Papers in Molecular Plant Sciences"

Editor

Topical Collection Information

Dear Colleagues,

This Topical Collection aims to collect high-quality review and original papers on omics techniques in the research fields of molecular plant sciences. Omics techniques include genomics, proteomics, transcriptomics, metabolomics, and so on. Genomics has revealed the static sequences of genes and proteins, and focus has been shifted to their functions, interaction, and modifications. The omics technologies are high-throughput technologies and have identified gene products (transcripts, proteins, and metabolites) present in a specific biological sample. Furthermore, omics technologies have opened new avenues towards biomarker discovery, identification of signaling molecules associated with function of plant growth, and stress responses. This Topical Collection will contain articles describing omics databases, new technology for omics, and system biology.

Since the aim of this Topical Collection is to illustrate, through selected works, frontier research in molecular plant sciences, we encourage Editorial Board Members of the Molecular Plant Sciences Section of the International Journal of Molecular Sciences to contribute papers reflecting the latest progress in their research field, or to invite relevant experts and colleagues to do so.

Prof. Dr. Setsuko Komatsu
Collection Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Omics
  • Plant
  • Plant sciences
  • Food sciences
  • Omics databases
  • New technology for omics
  • System biology

Published Papers (30 papers)

2020

Jump to: 2019

Open AccessArticle
Multi-Omics Revealed Molecular Mechanisms Underlying Guard Cell Systemic Acquired Resistance
Int. J. Mol. Sci. 2021, 22(1), 191; https://doi.org/10.3390/ijms22010191 - 27 Dec 2020
Abstract
Systemic Acquired Resistance (SAR) improves immunity of plant systemic tissue after local exposure to a pathogen. Guard cells that form stomatal pores on leaf surfaces recognize bacterial pathogens via pattern recognition receptors, such as Flagellin Sensitive 2 (FLS2). However, how SAR affects stomatal [...] Read more.
Systemic Acquired Resistance (SAR) improves immunity of plant systemic tissue after local exposure to a pathogen. Guard cells that form stomatal pores on leaf surfaces recognize bacterial pathogens via pattern recognition receptors, such as Flagellin Sensitive 2 (FLS2). However, how SAR affects stomatal immunity is not known. In this study, we aim to reveal molecular mechanisms underlying the guard cell response to SAR using multi-omics of proteins, metabolites and lipids. Arabidopsis plants previously exposed to pathogenic bacteria Pseudomonas syringae pv. tomato DC3000 (Pst) exhibit an altered stomatal response compared to control plants when they are later exposed to the bacteria. Reduced stomatal apertures of SAR primed plants lead to decreased number of bacteria in leaves. Multi-omics has revealed molecular components of SAR response specific to guard cells functions, including potential roles of reactive oxygen species (ROS) and fatty acid signaling. Our results show an increase in palmitic acid and its derivative in the primed guard cells. Palmitic acid may play a role as an activator of FLS2, which initiates stomatal immune response. Improved understanding of how SAR signals affect stomatal immunity can aid biotechnology and marker-based breeding of crops for enhanced disease resistance. Full article
Show Figures

Figure 1

Open AccessArticle
Quantitative Proteomic Analysis of ER Stress Response Reveals both Common and Specific Features in Two Contrasting Ecotypes of Arabidopsis thaliana
Int. J. Mol. Sci. 2020, 21(24), 9741; https://doi.org/10.3390/ijms21249741 - 21 Dec 2020
Abstract
Accumulation of unfolded and misfolded proteins in endoplasmic reticulum (ER) elicits a well-conserved response called the unfolded protein response (UPR), which triggers the upregulation of downstream genes involved in protein folding, vesicle trafficking, and ER-associated degradation (ERAD). Although dynamic transcriptomic responses and the [...] Read more.
Accumulation of unfolded and misfolded proteins in endoplasmic reticulum (ER) elicits a well-conserved response called the unfolded protein response (UPR), which triggers the upregulation of downstream genes involved in protein folding, vesicle trafficking, and ER-associated degradation (ERAD). Although dynamic transcriptomic responses and the underlying major transcriptional regulators in ER stress response in Arabidopsis have been well established, the proteome changes induced by ER stress have not been reported in Arabidopsis. In the current study, we found that the Arabidopsis Landsberg erecta (Ler) ecotype was more sensitive to ER stress than the Columbia (Col) ecotype. Quantitative mass spectrometry analysis with Tandem Mass Tag (TMT) isobaric labeling showed that, in total, 7439 and 7035 proteins were identified from Col and Ler seedlings, with 88 and 113 differentially regulated (FC > 1.3 or <0.7, p < 0.05) proteins by ER stress in Col and Ler, respectively. Among them, 40 proteins were commonly upregulated in Col and Ler, among which 10 were not upregulated in bzip28 bzip60 double mutant (Col background) plants. Of the 19 specifically upregulated proteins in Col, as compared with that in Ler, components in ERAD, N-glycosylation, vesicle trafficking, and molecular chaperones were represented. Quantitative RT-PCR showed that transcripts of eight out of 19 proteins were not upregulated (FC > 1.3 or <0.7, p < 0.05) by ER stress in Col ecotype, while transcripts of 11 out of 19 proteins were upregulated by ER stress in both ecotypes with no obvious differences in fold change between Col and Ler. Our results experimentally demonstrated the robust ER stress response at the proteome level in plants and revealed differentially regulated proteins that may contribute to the differed ER stress sensitivity between Col and Ler ecotypes in Arabidopsis. Full article
Show Figures

Figure 1

Open AccessArticle
Genome-Wide Survey and Expression Analysis of the KT/HAK/KUP Family in Brassica napus and Its Potential Roles in the Response to K+ Deficiency
Int. J. Mol. Sci. 2020, 21(24), 9487; https://doi.org/10.3390/ijms21249487 - 13 Dec 2020
Abstract
The KT/HAK/KUP (HAK) family is the largest potassium (K+) transporter family in plants, which plays key roles in K+ uptake and homeostasis, stress resistance, and root and embryo development. However, the HAK family has not yet been characterized in Brassica [...] Read more.
The KT/HAK/KUP (HAK) family is the largest potassium (K+) transporter family in plants, which plays key roles in K+ uptake and homeostasis, stress resistance, and root and embryo development. However, the HAK family has not yet been characterized in Brassica napus. In this study, 40 putative B. napus HAK genes (BnaHAKs) are identified and divided into four groups (Groups I–III and V) on the basis of phylogenetic analysis. Gene structure analysis revealed 10 conserved intron insertion sites across different groups. Collinearity analysis demonstrated that both allopolyploidization and small-scale duplication events contributed to the large expansion of BnaHAKs. Transcription factor (TF)-binding network construction, cis-element analysis, and microRNA prediction revealed that the expression of BnaHAKs is regulated by multiple factors. Analysis of RNA-sequencing data further revealed extensive expression profiles of the BnaHAKs in groups II, III, and V, with limited expression in group I. Compared with group I, most of the BnaHAKs in groups II, III, and V were more upregulated by hormone induction based on RNA-sequencing data. Reverse transcription-quantitative polymerase reaction analysis revealed that the expression of eight BnaHAKs of groups I and V was markedly upregulated under K+-deficiency treatment. Collectively, our results provide valuable information and key candidate genes for further functional studies of BnaHAKs. Full article
Show Figures

Figure 1

Open AccessArticle
Large-Scale Phosphoproteomic Study of Arabidopsis Membrane Proteins Reveals Early Signaling Events in Response to Cold
Int. J. Mol. Sci. 2020, 21(22), 8631; https://doi.org/10.3390/ijms21228631 - 16 Nov 2020
Abstract
Cold stress is one of the major factors limiting global crop production. For survival at low temperatures, plants need to sense temperature changes in the surrounding environment. How plants sense and respond to the earliest drop in temperature is still not clearly understood. [...] Read more.
Cold stress is one of the major factors limiting global crop production. For survival at low temperatures, plants need to sense temperature changes in the surrounding environment. How plants sense and respond to the earliest drop in temperature is still not clearly understood. The plasma membrane and its adjacent extracellular and cytoplasmic sites are the first checkpoints for sensing temperature changes and the subsequent events, such as signal generation and solute transport. To understand how plants respond to early cold exposure, we used a mass spectrometry-based phosphoproteomic method to study the temporal changes in protein phosphorylation events in Arabidopsis membranes during 5 to 60 min of cold exposure. The results revealed that brief cold exposures led to rapid phosphorylation changes in the proteins involved in cellular ion homeostasis, solute and protein transport, cytoskeleton organization, vesical trafficking, protein modification, and signal transduction processes. The phosphorylation motif and kinase–substrate network analysis also revealed that multiple protein kinases, including RLKs, MAPKs, CDPKs, and their substrates, could be involved in early cold signaling. Taken together, our results provide a first look at the cold-responsive phosphoproteome changes of Arabidopsis membrane proteins that can be a significant resource to understand how plants respond to an early temperature drop. Full article
Show Figures

Figure 1

Open AccessReview
Multi-Omics Strategies for Decoding Smoke-Assisted Germination Pathways and Seed Vigour
Int. J. Mol. Sci. 2020, 21(20), 7512; https://doi.org/10.3390/ijms21207512 - 12 Oct 2020
Abstract
The success of seed germination and the successful establishment of seedlings across diverse environmental conditions depends on seed vigour, which is of both economic and ecologic importance. The smoke-derived exogenous compound karrikins (KARs) and the endogenous plant hormone strigolactone (SL) are two classes [...] Read more.
The success of seed germination and the successful establishment of seedlings across diverse environmental conditions depends on seed vigour, which is of both economic and ecologic importance. The smoke-derived exogenous compound karrikins (KARs) and the endogenous plant hormone strigolactone (SL) are two classes of butanolide-containing molecules that follow highly similar signalling pathways to control diverse biological activities in plants. Unravelling the precise mode-of-action of these two classes of molecules in model species has been a key research objective. However, the specific and dynamic expression of biomolecules upon stimulation by these signalling molecules remains largely unknown. Genomic and post-genomic profiling approaches have enabled mining and association studies across the vast genetic diversity and phenotypic plasticity. Here, we review the background of smoke-assisted germination and vigour and the current knowledge of how plants perceive KAR and SL signalling and initiate the crosstalk with the germination-associated hormone pathways. The recent advancement of ‘multi-omics’ applications are discussed in the context of KAR signalling and with relevance to their adoption for superior agronomic trait development. The remaining challenges and future opportunities for integrating multi-omics datasets associated with their application in KAR-dependent seed germination and abiotic stress tolerance are also discussed. Full article
Show Figures

Figure 1

Open AccessReview
Review: Proteomic Techniques for the Development of Flood-Tolerant Soybean
Int. J. Mol. Sci. 2020, 21(20), 7497; https://doi.org/10.3390/ijms21207497 - 12 Oct 2020
Abstract
Soybean, which is rich in protein and oil as well as phytochemicals, is cultivated in several climatic zones. However, its growth is markedly decreased by flooding stress, which is caused by climate change. Proteomic techniques were used for understanding the flood-response and -tolerant [...] Read more.
Soybean, which is rich in protein and oil as well as phytochemicals, is cultivated in several climatic zones. However, its growth is markedly decreased by flooding stress, which is caused by climate change. Proteomic techniques were used for understanding the flood-response and -tolerant mechanisms in soybean. Subcellular proteomics has potential to elucidate localized cellular responses and investigate communications among subcellular components during plant growth and under stress stimuli. Furthermore, post-translational modifications play important roles in stress response and tolerance to flooding stress. Although many flood-response mechanisms have been reported, flood-tolerant mechanisms have not been fully clarified for soybean because of limitations in germplasm with flooding tolerance. This review provides an update on current biochemical and molecular networks involved in soybean tolerance against flooding stress, as well as recent developments in the area of functional genomics in terms of developing flood-tolerant soybeans. This work will expedite marker-assisted genetic enhancement studies in crops for developing high-yielding stress-tolerant lines or varieties under abiotic stress. Full article
Show Figures

Figure 1

Open AccessArticle
Proteomics Analysis of Plasma Membrane Fractions of the Root, Leaf, and Flower of Rice
Int. J. Mol. Sci. 2020, 21(19), 6988; https://doi.org/10.3390/ijms21196988 - 23 Sep 2020
Abstract
The plasma membrane regulates biological processes such as ion transport, signal transduction, endocytosis, and cell differentiation/proliferation. To understand the functional characteristics and organ specificity of plasma membranes, plasma membrane protein fractions from rice root, etiolated leaf, green leaf, developing leaf sheath, and flower [...] Read more.
The plasma membrane regulates biological processes such as ion transport, signal transduction, endocytosis, and cell differentiation/proliferation. To understand the functional characteristics and organ specificity of plasma membranes, plasma membrane protein fractions from rice root, etiolated leaf, green leaf, developing leaf sheath, and flower were analyzed by proteomics. Among the proteins identified, 511 were commonly accumulated in the five organs, whereas 270, 132, 359, 146, and 149 proteins were specifically accumulated in the root, etiolated leaf, green leaf, developing leaf sheath, and developing flower, respectively. The principle component analysis revealed that the functions of the plasma membrane in the root was different from those of green and etiolated leaves and that the plasma membrane protein composition of the leaf sheath was similar to that of the flower, but not that of the green leaf. Functional classification revealed that the root plasma membrane has more transport-related proteins than the leaf plasma membrane. Furthermore, the leaf sheath and flower plasma membranes were found to be richer in proteins involved in signaling and cell function than the green leaf plasma membrane. To validate the proteomics data, immunoblot analysis was carried out, focusing on four heterotrimeric G protein subunits, Gα, Gβ, Gγ1, and Gγ2. All subunits could be detected by both methods and, in particular, Gγ1 and Gγ2 required concentration by immunoprecipitation for mass spectrometry detection. Full article
Show Figures

Figure 1

Open AccessArticle
Structural and Functional Annotation of Transposable Elements Revealed a Potential Regulation of Genes Involved in Rubber Biosynthesis by TE-Derived siRNA Interference in Hevea brasiliensis
Int. J. Mol. Sci. 2020, 21(12), 4220; https://doi.org/10.3390/ijms21124220 - 13 Jun 2020
Abstract
The natural rubber biosynthetic pathway is well described in Hevea, although the final stages of rubber elongation are still poorly understood. Small Rubber Particle Proteins and Rubber Elongation Factors (SRPPs and REFs) are proteins with major function in rubber particle formation and [...] Read more.
The natural rubber biosynthetic pathway is well described in Hevea, although the final stages of rubber elongation are still poorly understood. Small Rubber Particle Proteins and Rubber Elongation Factors (SRPPs and REFs) are proteins with major function in rubber particle formation and stabilization. Their corresponding genes are clustered on a scaffold1222 of the reference genomic sequence of the Hevea brasiliensis genome. Apart from gene expression by transcriptomic analyses, to date, no deep analyses have been carried out for the genomic environment of SRPPs and REFs loci. By integrative analyses on transposable element annotation, small RNAs production and gene expression, we analysed their role in the control of the transcription of rubber biosynthetic genes. The first in-depth annotation of TEs (Transposable Elements) and their capacity to produce TE-derived siRNAs (small interfering RNAs) is presented, only possible in the Hevea brasiliensis clone PB 260 for which all data are available. We observed that 11% of genes are located near TEs and their presence may interfere in their transcription at both genetic and epigenetic level. We hypothesized that the genomic environment of rubber biosynthesis genes has been shaped by TE and TE-derived siRNAs with possible transcriptional interference on their gene expression. We discussed possible functionalization of TEs as enhancers and as donors of alternative transcription start sites in promoter sequences, possibly through the modelling of genetic and epigenetic landscapes. Full article
Show Figures

Figure 1

Open AccessArticle
Genome Wild Analysis and Molecular Understanding of the Aquaporin Diversity in Olive Trees (Olea Europaea L.)
Int. J. Mol. Sci. 2020, 21(11), 4183; https://doi.org/10.3390/ijms21114183 - 11 Jun 2020
Abstract
Cellular aquaporin water channels (AQPs) constitute a large family of transmembrane proteins present throughout all kingdoms of life, playing important roles in the uptake of water and many solutes across the membranes. In olive trees, AQP diversity, protein features and their biological functions [...] Read more.
Cellular aquaporin water channels (AQPs) constitute a large family of transmembrane proteins present throughout all kingdoms of life, playing important roles in the uptake of water and many solutes across the membranes. In olive trees, AQP diversity, protein features and their biological functions are still largely unknown. This study focuses on the structure and functional and evolution diversity of AQP subfamilies in two olive trees, the wild species Olea europaea var. sylvestris (OeuAQPs) and the domesticated species Olea europaea cv. Picual (OleurAQPs), and describes their involvement in different physiological processes of early plantlet development and in biotic and abiotic stress tolerance in the domesticated species. A scan of genomes from the wild and domesticated olive species revealed the presence of 52 and 79 genes encoding full-length AQP sequences, respectively. Cross-genera phylogenetic analysis with orthologous clustered OleaAQPs into five established subfamilies: PIP, TIP, NIP, SIP, and XIP. Subsequently, gene structures, protein motifs, substrate specificities and cellular localizations of the full length OleaAQPs were predicted. Functional prediction based on the NPA motif, ar/R selectivity filter, Froger’s and specificity-determining positions suggested differences in substrate specificities of Olea AQPs. Expression analysis of the OleurAQP genes indicates that some genes are tissue-specific, whereas few others show differential expressions at different developmental stages and in response to various biotic and abiotic stresses. The current study presents the first detailed genome-wide analysis of the AQP gene family in olive trees and it provides valuable information for further functional analysis to infer the role of AQP in the adaptation of olive trees in diverse environmental conditions in order to help the genetic improvement of domesticated olive trees. Full article
Show Figures

Graphical abstract

Open AccessArticle
Scenarios of Genes-to-Terpenoids Network Led to the Identification of a Novel α/β-Farnesene/β-Ocimene Synthase in Camellia sinensis
Int. J. Mol. Sci. 2020, 21(2), 655; https://doi.org/10.3390/ijms21020655 - 19 Jan 2020
Abstract
Terpenoids play vital roles in tea aroma quality and plants defense performance determination, whereas the scenarios of genes to metabolites of terpenes pathway remain uninvestigated in tea plants. Here, we report the use of an integrated approach combining metabolites, target gene transcripts and [...] Read more.
Terpenoids play vital roles in tea aroma quality and plants defense performance determination, whereas the scenarios of genes to metabolites of terpenes pathway remain uninvestigated in tea plants. Here, we report the use of an integrated approach combining metabolites, target gene transcripts and function analyses to reveal a gene-to-terpene network in tea plants. Forty-one terpenes including 26 monoterpenes, 14 sesquiterpenes and one triterpene were detected and 82 terpenes related genes were identified from five tissues of tea plants. Pearson correlation analysis resulted in genes to metabolites network. One terpene synthases whose expression positively correlated with farnesene were selected and its function was confirmed involved in the biosynthesis of α-farnesene, β-ocimene and β-farnesene, a very important and conserved alarm pheromone in response to aphids by both in vitro enzymatic assay in planta function analysis. In summary, we provided the first reliable gene-to-terpene network for novel genes discovery. Full article
Show Figures

Figure 1

Open AccessArticle
Foliar Application of Chitosan Increases Tomato Growth and Influences Mycorrhization and Expression of Endochitinase-Encoding Genes
Int. J. Mol. Sci. 2020, 21(2), 535; https://doi.org/10.3390/ijms21020535 - 14 Jan 2020
Cited by 2
Abstract
Nowadays, applying bio-organic fertilizer (e.g., chitosan, Ch) or integrating beneficial microorganisms (e.g., arbuscular mycorrhizal fungi, AMF) are among the successful strategies to promote plant growth. Here, the effect of two application modes of Ch (foliar spray or root treatment) and Ch-derived nanoparticles (NPs) [...] Read more.
Nowadays, applying bio-organic fertilizer (e.g., chitosan, Ch) or integrating beneficial microorganisms (e.g., arbuscular mycorrhizal fungi, AMF) are among the successful strategies to promote plant growth. Here, the effect of two application modes of Ch (foliar spray or root treatment) and Ch-derived nanoparticles (NPs) on tomato plants colonized with the AMF Rhizophagus irregularis were analyzed, thereby focusing on plant biomass, flowering and mycorrhization. An increase of shoot biomass and flower number was observed in arbuscular mycorrhizal (AM) plants sprayed with Ch. The interaction with AMF, however, was reduced as shown by decreased mycorrhization rates and AM-specific gene expression. To get insights into Ch effect on mycorrhization, levels of sugars, jasmonates, abscisic acid, and the expression of two chitinase-encoding genes were determined in mycorrhizal roots. Ch had no effect on sugar and phytohormone levels, but the reduced mycorrhization was correlated with down- and upregulated expression of Chi3 and Chi9, respectively. In contrast, application of NPs to leaves and Ch applied to the soil did not show any effect, neither on mycorrhization rate nor on growth of mycorrhizal plants. Concluding, Ch application to leaves enhanced plant growth and flowering and reduced interaction with AMF, whereas root treatment did not affect these parameters. Full article
Show Figures

Figure 1

Open AccessArticle
Proteomic Analysis of Irradiation with Millimeter Waves on Soybean Growth under Flooding Conditions
Int. J. Mol. Sci. 2020, 21(2), 486; https://doi.org/10.3390/ijms21020486 - 12 Jan 2020
Cited by 3
Abstract
Improving soybean growth and tolerance under environmental stress is crucial for sustainable development. Millimeter waves are a radio-frequency band with a wavelength range of 1–10 mm that has dynamic effects on organisms. To investigate the potential effects of millimeter-waves irradiation on soybean seedlings, [...] Read more.
Improving soybean growth and tolerance under environmental stress is crucial for sustainable development. Millimeter waves are a radio-frequency band with a wavelength range of 1–10 mm that has dynamic effects on organisms. To investigate the potential effects of millimeter-waves irradiation on soybean seedlings, morphological and proteomic analyses were performed. Millimeter-waves irradiation improved the growth of roots/hypocotyl and the tolerance of soybean to flooding stress. Proteomic analysis indicated that the irradiated soybean seedlings recovered under oxidative stress during growth, whereas proteins related to glycolysis and ascorbate/glutathione metabolism were not affected. Immunoblot analysis confirmed the promotive effect of millimeter waves to glycolysis- and redox-related pathways under flooding conditions. Sugar metabolism was suppressed under flooding in unirradiated soybean seedlings, whereas it was activated in the irradiated ones, especially trehalose synthesis. These results suggest that millimeter-waves irradiation on soybean seeds promotes the recovery of soybean seedlings under oxidative stress, which positively regulates soybean growth through the regulation of glycolysis and redox related pathways. Full article
Show Figures

Figure 1

Open AccessArticle
Proteomic Responses to Drought Vary Widely Among Eight Diverse Genotypes of Rice (Oryza sativa)
Int. J. Mol. Sci. 2020, 21(1), 363; https://doi.org/10.3390/ijms21010363 - 06 Jan 2020
Cited by 4
Abstract
Rice is a critically important food source but yields worldwide are vulnerable to periods of drought. We exposed eight genotypes of upland and lowland rice (Oryza sativa L. ssp. japonica and indica) to drought stress at the late vegetative stage, and [...] Read more.
Rice is a critically important food source but yields worldwide are vulnerable to periods of drought. We exposed eight genotypes of upland and lowland rice (Oryza sativa L. ssp. japonica and indica) to drought stress at the late vegetative stage, and harvested leaves for label-free shotgun proteomics. Gene ontology analysis was used to identify common drought-responsive proteins in vegetative tissues, and leaf proteins that are unique to individual genotypes, suggesting diversity in the metabolic responses to drought. Eight proteins were found to be induced in response to drought stress in all eight genotypes. A total of 213 proteins were identified in a single genotype, 83 of which were increased in abundance in response to drought stress. In total, 10 of these 83 proteins were of a largely uncharacterized function, making them candidates for functional analysis and potential biomarkers for drought tolerance. Full article
Show Figures

Figure 1

2019

Jump to: 2020

Open AccessArticle
Rice Senescence-Induced Receptor-Like Kinase (OsSRLK) Is Involved in Phytohormone-Mediated Chlorophyll Degradation
Int. J. Mol. Sci. 2020, 21(1), 260; https://doi.org/10.3390/ijms21010260 - 30 Dec 2019
Cited by 2
Abstract
Chlorophyll breakdown is a vital catabolic process of leaf senescence as it allows the recycling of nitrogen and other nutrients. In the present study, we isolated rice senescence-induced receptor-like kinase (OsSRLK), whose transcription was upregulated in senescing rice leaves. The detached [...] Read more.
Chlorophyll breakdown is a vital catabolic process of leaf senescence as it allows the recycling of nitrogen and other nutrients. In the present study, we isolated rice senescence-induced receptor-like kinase (OsSRLK), whose transcription was upregulated in senescing rice leaves. The detached leaves of ossrlk mutant (ossrlk) contained more green pigment than those of the wild type (WT) during dark-induced senescence (DIS). HPLC and immunoblot assay revealed that degradation of chlorophyll and photosystem II proteins was repressed in ossrlk during DIS. Furthermore, ultrastructural analysis revealed that ossrlk leaves maintained the chloroplast structure with intact grana stacks during dark incubation; however, the retained green color and preserved chloroplast structures of ossrlk did not enhance the photosynthetic competence during age-dependent senescence in autumn. In ossrlk, the panicles per plant was increased and the spikelets per panicle were reduced, resulting in similar grain productivity between WT and ossrlk. By transcriptome analysis using RNA sequencing, genes related to phytohormone, senescence, and chlorophyll biogenesis were significantly altered in ossrlk compared to those in WT during DIS. Collectively, our findings indicate that OsSRLK may degrade chlorophyll by participating in a phytohormone-mediated pathway. Full article
Show Figures

Figure 1

Open AccessArticle
Function of miR825 and miR825* as Negative Regulators in Bacillus cereus AR156-elicited Systemic Resistance to Botrytis cinerea in Arabidopsis thaliana
Int. J. Mol. Sci. 2019, 20(20), 5032; https://doi.org/10.3390/ijms20205032 - 11 Oct 2019
Cited by 4
Abstract
Small RNAs function to regulate plant defense responses to pathogens. We previously showed that miR825 and miR825* downregulate Bacillus cereus AR156 (AR156)-triggered systemic resistance to Pseudomonassyringae pv. tomato DC3000 in Arabidopsis thaliana (Arabidopsis). Here, Northern blotting revealed that miR825 and miR825* [...] Read more.
Small RNAs function to regulate plant defense responses to pathogens. We previously showed that miR825 and miR825* downregulate Bacillus cereus AR156 (AR156)-triggered systemic resistance to Pseudomonassyringae pv. tomato DC3000 in Arabidopsis thaliana (Arabidopsis). Here, Northern blotting revealed that miR825 and miR825* were more strongly downregulated in wild type Arabidopsis Col-0 (Col-0) plants pretreated with AR156 than in nontreated plants upon Botrytis cinerea (B. cinerea) B1301 infection. Furthermore, compared with Col-0, transgenic plants with attenuated miR825 and miR825* expression were more resistant to B. cinerea B1301, yet miR825- and miR825*-overexpressing (OE) plants were more susceptible to the pathogen. With AR156 pretreatment, the transcription of four defense-related genes (PR1, PR2, PR5, and PDF1.2) and cellular defense responses (hydrogen peroxide production and callose deposition) were faster and stronger in miR825 and miR825* knockdown lines but weaker in their OE plants than in Col-0 plants upon pathogen attack. Also, AR156 pretreatment caused stronger phosphorylation of MPK3 and MPK6 and expression of FRK1 and WRKY53 genes upon B. cinerea B1301 inoculation in miR825 and miR825* knockdown plants than in Col-0 plants. Additionally, the assay of agrobacterium-mediated transient co-expression in Nicotiana benthamiana confirmed that AT5G40910, AT5G38850, AT3G04220, and AT5G44940 are target genes of miR825 or miR825*. Compared with Col-0, the target mutant lines showed higher susceptibility to B. cinerea B1301, while still expressing AR156-triggered induced systemic resistance (ISR). The two-way analysis of variance (ANOVA) revealed a significant (P < 0.01) interactive effect of treatment and genotype on the defense responses. Hence, miR825 and miR825*act as negative regulators of AR156-mediated systemic resistance to B. cinerea B1301 in Arabidopsis. Full article
Show Figures

Figure 1

Open AccessArticle
NET4 Modulates the Compactness of Vacuoles in Arabidopsis thaliana
Int. J. Mol. Sci. 2019, 20(19), 4752; https://doi.org/10.3390/ijms20194752 - 25 Sep 2019
Cited by 3
Abstract
The dimension of the plants largest organelle—the vacuole—plays a major role in defining cellular elongation rates. The morphology of the vacuole is controlled by the actin cytoskeleton, but molecular players remain largely unknown. Recently, the Networked (NET) family of membrane-associated, actin-binding proteins has [...] Read more.
The dimension of the plants largest organelle—the vacuole—plays a major role in defining cellular elongation rates. The morphology of the vacuole is controlled by the actin cytoskeleton, but molecular players remain largely unknown. Recently, the Networked (NET) family of membrane-associated, actin-binding proteins has been identified. Here, we show that NET4A localizes to highly constricted regions of the vacuolar membrane and contributes to vacuolar morphology. Using genetic interference, we found that deregulation of NET4 abundance increases vacuolar occupancy, and that overexpression of NET4 abundance decreases vacuolar occupancy. Our data reveal that NET4A induces more compact vacuoles, correlating with reduced cellular and organ growth in Arabidopsis thaliana. Full article
Show Figures

Figure 1

Open AccessArticle
OsWRKY5 Promotes Rice Leaf Senescence via Senescence-Associated NAC and Abscisic Acid Biosynthesis Pathway
Int. J. Mol. Sci. 2019, 20(18), 4437; https://doi.org/10.3390/ijms20184437 - 09 Sep 2019
Cited by 6
Abstract
he onset of leaf senescence is triggered by external cues and internal factors such as phytohormones and signaling pathways involving transcription factors (TFs). Abscisic acid (ABA) strongly induces senescence and endogenous ABA levels are finely tuned by many senescence-associated TFs. Here, we report [...] Read more.
he onset of leaf senescence is triggered by external cues and internal factors such as phytohormones and signaling pathways involving transcription factors (TFs). Abscisic acid (ABA) strongly induces senescence and endogenous ABA levels are finely tuned by many senescence-associated TFs. Here, we report on the regulatory function of the senescence-induced TF OsWRKY5 TF in rice (Oryza sativa). OsWRKY5 expression was rapidly upregulated in senescing leaves, especially in yellowing sectors initiated by aging or dark treatment. A T-DNA insertion activation-tagged OsWRKY5-overexpressing mutant (termed oswrky5-D) promoted leaf senescence under natural and dark-induced senescence (DIS) conditions. By contrast, a T-DNA insertion oswrky5-knockdown mutant (termed oswrky5) retained leaf greenness during DIS. Reverse-transcription quantitative PCR (RT-qPCR) showed that OsWRKY5 upregulates the expression of genes controlling chlorophyll degradation and leaf senescence. Furthermore, RT-qPCR and yeast one-hybrid analysis demonstrated that OsWRKY5 indirectly upregulates the expression of senescence-associated NAM/ATAF1/2/CUC2 (NAC) genes including OsNAP and OsNAC2. Precocious leaf yellowing in the oswrky5-D mutant might be caused by elevated endogenous ABA concentrations resulting from upregulated expression of ABA biosynthesis genes OsNCED3, OsNCED4, and OsNCED5, indicating that OsWRKY is a positive regulator of ABA biosynthesis during leaf senescence. Furthermore, OsWRKY5 expression was suppressed by ABA treatment. Taken together, OsWRKY5 is a positive regulator of leaf senescence that upregulates senescence-induced NAC, ABA biosynthesis, and chlorophyll degradation genes. Full article
Show Figures

Graphical abstract

Open AccessArticle
Selection of Appropriate Reference Genes for Gene Expression Analysis under Abiotic Stresses in Salix viminalis
Int. J. Mol. Sci. 2019, 20(17), 4210; https://doi.org/10.3390/ijms20174210 - 28 Aug 2019
Cited by 4
Abstract
Salix viminalis is a fast growing willow species with potential as a plant used for biomass feedstock or for phytoremediation. However, few reference genes (RGs) for quantitative real-time polymerase chain reaction (qPCR) are available in S. viminalis, thereby limiting gene expression studies. [...] Read more.
Salix viminalis is a fast growing willow species with potential as a plant used for biomass feedstock or for phytoremediation. However, few reference genes (RGs) for quantitative real-time polymerase chain reaction (qPCR) are available in S. viminalis, thereby limiting gene expression studies. Here, we investigated the expression stability of 14 candidate reference genes (RGs) across various organs exposed to five abiotic stresses (cold, heat, drought, salt, and poly-metals). Four RGs ranking algorithms, namely geNormPLUS, BestKeeper, NormFinder, and GrayNorm were applied to analyze the qPCR data and the outputs were merged into consensus lists with RankAggreg, a rank aggregation algorithm. In addition, the optimal RG combinations were determined with geNormPLUS and GrayNorm. The genes that were the most stable in the roots were TIP41 and CDC2. In the leaves, TIP41 was the most stable, followed by EF1b and ARI8, depending on the condition tested. Conversely, GAPDH and β-TUB, two genes commonly used for qPCR data normalization were the least stable across all organs. Nevertheless, both geNormPLUS and GrayNorm recommended the use of a combination of genes rather than a single one. These results are valuable for research of transcriptomic responses in different S. viminalis organs. Full article
Show Figures

Figure 1

Open AccessArticle
Posttranscriptional Regulation of RhBRC1 (Rosa hybrida BRANCHED1) in Response to Sugars is Mediated via its Own 3′ Untranslated Region, with a Potential Role of RhPUF4 (Pumilio RNA-Binding Protein Family)
Int. J. Mol. Sci. 2019, 20(15), 3808; https://doi.org/10.3390/ijms20153808 - 04 Aug 2019
Cited by 3
Abstract
The shoot branching pattern is a determining phenotypic trait throughout plant development. During shoot branching, BRANCHED1 (BRC1) plays a master regulator role in bud outgrowth, and its transcript levels are regulated by various exogenous and endogenous factors. RhBRC1 (the homologous gene [...] Read more.
The shoot branching pattern is a determining phenotypic trait throughout plant development. During shoot branching, BRANCHED1 (BRC1) plays a master regulator role in bud outgrowth, and its transcript levels are regulated by various exogenous and endogenous factors. RhBRC1 (the homologous gene of BRC1 in Rosa hybrida) is a main branching regulator whose posttranscriptional regulation in response to sugar was investigated through its 3′UTR. Transformed Rosa calluses containing a construction composed of the CaMV35S promoter, the green fluorescent protein (GFP) reporter gene, and the 3′UTR of RhBRC1 (P35S:GFP::3′UTRRhBRC1) were obtained and treated with various combinations of sugars and with sugar metabolism effectors. The results showed a major role of the 3′UTR of RhBRC1 in response to sugars, involving glycolysis/the tricarboxylic acid cycle (TCA) and the oxidative pentose phosphate pathway (OPPP). In Rosa vegetative buds, sequence analysis of the RhBRC1 3′UTR identified six binding motifs specific to the Pumilio/FBF RNA-binding protein family (PUF) and probably involved in posttranscriptional regulation. RhPUF4 was highly expressed in the buds of decapitated plants and in response to sugar availability in in-vitro-cultured buds. RhPUF4 was found to be close to AtPUM2, which encodes an Arabidopsis PUF protein. In addition, sugar-dependent upregulation of RhPUF4 was also found in Rosa calluses. RhPUF4 expression was especially dependent on the OPPP, supporting its role in OPPP-dependent posttranscriptional regulation of RhBRC1. These findings indicate that the 3′UTR sequence could be an important target in the molecular regulatory network of RhBRC1 and pave the way for investigating new aspects of RhBRC1 regulation. Full article
Show Figures

Graphical abstract

Open AccessArticle
Evaluating the Efficiency of gRNAs in CRISPR/Cas9 Mediated Genome Editing in Poplars
Int. J. Mol. Sci. 2019, 20(15), 3623; https://doi.org/10.3390/ijms20153623 - 24 Jul 2019
Cited by 5
Abstract
CRISPR/Cas9 has become one of the most promising techniques for genome editing in plants and works very well in poplars with an Agrobacterium-mediated transformation system. We selected twelve genes, including SOC1, FUL, and their paralogous genes, four NFP-like genes and [...] Read more.
CRISPR/Cas9 has become one of the most promising techniques for genome editing in plants and works very well in poplars with an Agrobacterium-mediated transformation system. We selected twelve genes, including SOC1, FUL, and their paralogous genes, four NFP-like genes and TOZ19 for three different research topics. The gRNAs were designed for editing, and, together with a constitutively expressed Cas9 nuclease, transferred either into the poplar hybrid Populus × canescens or into P. tremula. The regenerated lines showed different types of editing and revealed several homozygous editing events which are of special interest in perennial species because of limited back-cross ability. Through a time series, we could show that despite the constitutive expression of the Cas9 nuclease, no secondary editing of the target region occurred. Thus, constitutive Cas9 expression does not seem to pose any risk to additional editing events. Based on various criteria, we obtained evidence for a relationship between the structure of gRNA and the efficiency of gene editing. In particular, the GC content, purine residues in the gRNA end, and the free accessibility of the seed region seemed to be highly important for genome editing in poplars. Based on our findings on nine different poplar genes, efficient gRNAs can be designed for future efficient editing applications in poplars. Full article
Show Figures

Figure 1

Open AccessArticle
Dissecting Adaptation Mechanisms to Contrasting Solar Irradiance in the Mediterranean Shrub Cistus incanus
Int. J. Mol. Sci. 2019, 20(14), 3599; https://doi.org/10.3390/ijms20143599 - 23 Jul 2019
Cited by 1
Abstract
Molecular mechanisms that are the base of the strategies adopted by Mediterranean plants to cope with the challenges imposed by limited or excessive solar radiation during the summer season have received limited attention. In our study, conducted on C. incanus plants growing in [...] Read more.
Molecular mechanisms that are the base of the strategies adopted by Mediterranean plants to cope with the challenges imposed by limited or excessive solar radiation during the summer season have received limited attention. In our study, conducted on C. incanus plants growing in the shade or in full sunlight, we performed measurements of relevant physiological traits, such as leaf water potential, gas exchange and PSII photochemistry, RNA-Seq with de-novo assembly, and the analysis of differentially expressed genes. We also identified and quantified photosynthetic pigments, abscisic acid, and flavonoids. Here, we show major mechanisms regulating light perception and signaling which, in turn, sustain the shade avoidance syndrome displayed by the ‘sun loving’ C. incanus. We offer clear evidence of the detrimental effects of excessive light on both the assembly and the stability of PSII, and the activation of a suite of both repair and effective antioxidant mechanisms in sun-adapted leaves. For instance, our study supports the view of major antioxidant functions of zeaxanthin in sunny plants concomitantly challenged by severe drought stress. Finally, our study confirms the multiple functions served by flavonoids, both flavonols and flavanols, in the adaptive mechanisms of plants to the environmental pressures associated to Mediterranean climate. Full article
Show Figures

Figure 1

Open AccessArticle
In Vitro Acquisition of Specific Small Interfering RNAs Inhibits the Expression of Some Target Genes in the Plant Ectoparasite Xiphinema index
Int. J. Mol. Sci. 2019, 20(13), 3266; https://doi.org/10.3390/ijms20133266 - 03 Jul 2019
Cited by 1
Abstract
Xiphinema index is an important plant parasitic nematode that induces direct damages and specifically transmits the Grapevine fanleaf virus, which is particularly harmful for grapevines. Genomic resources of this nematode species are still limited and no functional gene validation technology is available. [...] Read more.
Xiphinema index is an important plant parasitic nematode that induces direct damages and specifically transmits the Grapevine fanleaf virus, which is particularly harmful for grapevines. Genomic resources of this nematode species are still limited and no functional gene validation technology is available. RNA interference (RNAi) is a powerful technology to study gene function and here we describe the application of RNAi on several genes in X. index. Soaking the nematodes for 48 h in a suspension containing specific small interfering RNAs resulted in a partial inhibition of the accumulation of some targeted mRNA. However, low reproducible silencing efficiency was observed which could arise from X. index silencing pathway deficiencies. Indeed, essential accustomed proteins for these pathways were not found in the X. index proteome predicted from transcriptomic data. The most reproducible silencing effect was obtained when targeting the piccolo gene potentially involved in endo-exocytosis of synaptic molecules. This represents the first report of gene silencing in a nematode belonging to the Longidoridae family. Full article
Show Figures

Figure 1

Open AccessReview
ALLENE OXIDE SYNTHASE and HYDROPEROXIDE LYASE, Two Non-Canonical Cytochrome P450s in Arabidopsis thaliana and Their Different Roles in Plant Defense
Int. J. Mol. Sci. 2019, 20(12), 3064; https://doi.org/10.3390/ijms20123064 - 23 Jun 2019
Cited by 3
Abstract
The channeling of metabolites is an essential step of metabolic regulation in all living organisms. Multifunctional enzymes with defined domains for metabolite compartmentalization are rare, but in many cases, larger assemblies forming multimeric protein complexes operate in defined metabolic shunts. In Arabidopsis thaliana [...] Read more.
The channeling of metabolites is an essential step of metabolic regulation in all living organisms. Multifunctional enzymes with defined domains for metabolite compartmentalization are rare, but in many cases, larger assemblies forming multimeric protein complexes operate in defined metabolic shunts. In Arabidopsis thaliana, a multimeric complex was discovered that contains a 13-lipoxygenase and allene oxide synthase (AOS) as well as allene oxide cyclase. All three plant enzymes are localized in chloroplasts, contributing to the biosynthesis of jasmonic acid (JA). JA and its derivatives act as ubiquitous plant defense regulators in responses to both biotic and abiotic stresses. AOS belongs to the superfamily of cytochrome P450 enzymes and is named CYP74A. Another CYP450 in chloroplasts, hydroperoxide lyase (HPL, CYP74B), competes with AOS for the common substrate. The products of the HPL reaction are green leaf volatiles that are involved in the deterrence of insect pests. Both enzymes represent non-canonical CYP450 family members, as they do not depend on O2 and NADPH-dependent CYP450 reductase activities. AOS and HPL activities are crucial for plants to respond to different biotic foes. In this mini-review, we aim to summarize how plants make use of the LOX2–AOS–AOC2 complex in chloroplasts to boost JA biosynthesis over volatile production and how this situation may change in plant communities during mass ingestion by insect pests. Full article
Show Figures

Graphical abstract

Open AccessArticle
The Triple Amino Acid Substitution TAP-IVS in the EPSPS Gene Confers High Glyphosate Resistance to the Superweed Amaranthus hybridus
Int. J. Mol. Sci. 2019, 20(10), 2396; https://doi.org/10.3390/ijms20102396 - 15 May 2019
Cited by 13
Abstract
The introduction of glyphosate-resistant (GR) crops revolutionized weed management; however, the improper use of this technology has selected for a wide range of weeds resistant to glyphosate, referred to as superweeds. We characterized the high glyphosate resistance level of an Amaranthus hybridus population [...] Read more.
The introduction of glyphosate-resistant (GR) crops revolutionized weed management; however, the improper use of this technology has selected for a wide range of weeds resistant to glyphosate, referred to as superweeds. We characterized the high glyphosate resistance level of an Amaranthus hybridus population (GRH)—a superweed collected in a GR-soybean field from Cordoba, Argentina—as well as the resistance mechanisms that govern it in comparison to a susceptible population (GSH). The GRH population was 100.6 times more resistant than the GSH population. Reduced absorption and metabolism of glyphosate, as well as gene duplication of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) or its overexpression did not contribute to this resistance. However, GSH plants translocated at least 10% more 14C-glyphosate to the rest of the plant and roots than GRH plants at 9 h after treatment. In addition, a novel triple amino acid substitution from TAP (wild type, GSH) to IVS (triple mutant, GRH) was identified in the EPSPS gene of the GRH. The nucleotide substitutions consisted of ATA102, GTC103 and TCA106 instead of ACA102, GCG103, and CCA106, respectively. The hydrogen bond distances between Gly-101 and Arg-105 positions increased from 2.89 Å (wild type) to 2.93 Å (triple-mutant) according to the EPSPS structural modeling. These results support that the high level of glyphosate resistance of the GRH A. hybridus population was mainly governed by the triple mutation TAP-IVS found of the EPSPS target site, but the impaired translocation of herbicide also contributed in this resistance. Full article
Show Figures

Graphical abstract

Open AccessArticle
OsbZIP81, A Homologue of Arabidopsis VIP1, May Positively Regulate JA Levels by Directly Targetting the Genes in JA Signaling and Metabolism Pathway in Rice
Int. J. Mol. Sci. 2019, 20(9), 2360; https://doi.org/10.3390/ijms20092360 - 13 May 2019
Cited by 3
Abstract
Rice (Oryza sativa L.) is one of the most important food crops in the world. In plants, jasmonic acid (JA) plays essential roles in response to biotic and abiotic stresses. As one of the largest transcription factors (TFs), basic region/leucine zipper motif [...] Read more.
Rice (Oryza sativa L.) is one of the most important food crops in the world. In plants, jasmonic acid (JA) plays essential roles in response to biotic and abiotic stresses. As one of the largest transcription factors (TFs), basic region/leucine zipper motif (bZIP) TFs play pivotal roles through the whole life of plant growth. However, the relationship between JA and bZIP TFs were rarely reported, especially in rice. In this study, we found two rice homologues of Arabidopsis VIP1 (VirE2-interacting protein 1), OsbZIP81, and OsbZIP84. OsbZIP81 has at least two alternative transcripts, OsbZIP81.1 and OsbZIP81.2. OsbZIP81.1 and OsbZIP84 are typical bZIP TFs, while OsbZIP81.2 is not. OsbZIP81.1 can directly bind OsPIOX and activate its expression. In OsbZIP81.1 overexpression transgenic rice plant, JA (Jasmonic Acid) and SA (Salicylic acid) were up-regulated, while ABA (Abscisic acid) was down-regulated. Moreover, Agrobacterium, Methyl Jasmonic Acid (MeJA), and PEG6000 can largely induce OsbZIP81. Based on ChIP-Seq and Random DNA Binding Selection Assay (RDSA), we identified a novel cis-element OVRE (Oryza VIP1 response element). Combining ChIP-Seq and RNA-Seq, we obtained 1332 targeted genes that were categorized in biotic and abiotic responses, including α-linolenic acid metabolism and fatty acid degradation. Together, these results suggest that OsbZIP81 may positively regulate JA levels by directly targeting the genes in JA signaling and metabolism pathway in rice. Full article
Show Figures

Figure 1

Open AccessArticle
Genetic Variation for Seed Metabolite Levels in Brachypodium distachyon
Int. J. Mol. Sci. 2019, 20(9), 2348; https://doi.org/10.3390/ijms20092348 - 11 May 2019
Cited by 2
Abstract
Metabolite composition and concentrations in seed grains are important traits of cereals. To identify the variation in the seed metabolotypes of a model grass, namely Brachypodium distachyon, we applied a widely targeted metabolome analysis to forty inbred lines of B. distachyon and [...] Read more.
Metabolite composition and concentrations in seed grains are important traits of cereals. To identify the variation in the seed metabolotypes of a model grass, namely Brachypodium distachyon, we applied a widely targeted metabolome analysis to forty inbred lines of B. distachyon and examined the accumulation patterns of 183 compounds in the seeds. By comparing the metabolotypes with the population structure of these lines, we found signature metabolites that represent different accumulation patterns for each of the three B. distachyon subpopulations. Moreover, we found that thirty-seven metabolites exhibited significant differences in their accumulation between the lines Bd21 and Bd3-1. Using a recombinant inbred line (RIL) population from a cross between Bd3-1 and Bd21, we identified the quantitative trait loci (QTLs) linked with this variation in the accumulation of thirteen metabolites. Our metabolite QTL analysis illustrated that different genetic factors may presumably regulate the accumulation of 4-pyridoxate and pyridoxamine in vitamin B6 metabolism. Moreover, we found two QTLs on chromosomes 1 and 4 that affect the accumulation of an anthocyanin, chrysanthemin. These QTLs genetically interacted to regulate the accumulation of this compound. This study demonstrates the potential for metabolite QTL mapping in B. distachyon and provides new insights into the genetic dissection of metabolomic traits in temperate grasses. Full article
Show Figures

Graphical abstract

Open AccessArticle
A New Subclade of Leptosphaeria biglobosa Identified from Brassica rapa
Int. J. Mol. Sci. 2019, 20(7), 1668; https://doi.org/10.3390/ijms20071668 - 03 Apr 2019
Cited by 1
Abstract
Blackleg (Phoma stem canker) of crucifers is a globally important disease caused by the ascomycete species complex comprising of Leptosphaeria maculans and Leptosphaeria biglobosa. Six blackleg isolates recovered from Brassica rapa cv. Mizspoona in the Willamette Valley of Oregon were characterized as [...] Read more.
Blackleg (Phoma stem canker) of crucifers is a globally important disease caused by the ascomycete species complex comprising of Leptosphaeria maculans and Leptosphaeria biglobosa. Six blackleg isolates recovered from Brassica rapa cv. Mizspoona in the Willamette Valley of Oregon were characterized as L. biglobosa based on standard pathogenicity tests and molecular phylogenetic analysis. These isolates were compared to 88 characterized L. biglobosa isolates from western Canada, 22 isolates from Australia, and 6 L. maculans isolates from Idaho, USA using maximum parsimony and distance analysis of phylogenetic trees generated from the ITS rDNA (internal transcribed spacer rDNA) sequence, and the actin and β-tubulin gene sequences. The L. biglobosa isolates derived from B. rapa collected in Oregon formed a separate subclade based on concatenated gene sequences or a single gene sequence, regardless of the analyses. Pathogenicity tests showed that these isolates failed to infect either resistant or susceptible B. napus cultivars, but caused severe symptoms on three B. rapa cultivars (Accession number: UM1113, UM1112, and UM1161), a B. oleracea var. capitata (cabbage) cultivar (Copenhagen Market), and two B. juncea cultivars (CBM, a common brown Mustard, and Forge). These findings demonstrated that the L. biglobosa isolates derived from a B. rapa crop in Oregon were genetically distinct from existing species of L. biglobosa, and constitute a new subclade, herein proposed as L. biglobosa ‘americensis’. Full article
Show Figures

Graphical abstract

Open AccessArticle
Chemical Variability of the Essential Oil of Origanum ehrenbergii Boiss. from Lebanon, Assessed by Independent Component Analysis (ICA) and Common Component and Specific Weight Analysis (CCSWA)
Int. J. Mol. Sci. 2019, 20(5), 1026; https://doi.org/10.3390/ijms20051026 - 27 Feb 2019
Cited by 3
Abstract
Origanum ehrenbergii Boiss., an endemic plant to Lebanon, is widely acknowledged in Lebanese traditional medicine. The aim of the present study was to evaluate the influence of the drying method, region, and time of harvest on yield and chemical composition of O. ehrenbergii [...] Read more.
Origanum ehrenbergii Boiss., an endemic plant to Lebanon, is widely acknowledged in Lebanese traditional medicine. The aim of the present study was to evaluate the influence of the drying method, region, and time of harvest on yield and chemical composition of O. ehrenbergii essential oils (EOs). Plants were harvested monthly throughout 2013 and 2014, from two different regions, Aabadiye and Qartaba, then dried using two drying methods: lyophilization and shade-drying at 4 °C. EO was extracted by hydrodistillation and analyzed by GC/MS. GC-MS data, combined with independent component analysis (ICA) and common component and specific weight analysis (CCSWA), showed that drying techniques, region of harvest, and soil composition have no effect on the chemical composition of O. ehrenbergii EOs. Of the factors analyzed, only harvesting time affected the EO composition of this species. High and stable amounts of carvacrol, associated with reliable antimicrobial activities, were detected in material harvested between March and October. EOs obtained from plants harvested in Aabadiye in January and February showed high amounts of thymoquinone, related to anti-inflammatory and cytotoxic effects. The use of ICA and CCSWA was proven to be efficient, and allowed the development of a discriminant model for the classification of O. ehrenbergii chemotype and the determination of the best harvesting time. Full article
Show Figures

Figure 1

Open AccessArticle
Comparative Dissection of Three Giant Genomes: Allium cepa, Allium sativum, and Allium ursinum
Int. J. Mol. Sci. 2019, 20(3), 733; https://doi.org/10.3390/ijms20030733 - 09 Feb 2019
Cited by 13
Abstract
Knowledge of the fascinating world of DNA repeats is continuously being enriched by newly identified elements and their hypothetical or well-established biological relevance. Genomic approaches can be used for comparative studies of major repeats in any group of genomes, regardless of their size [...] Read more.
Knowledge of the fascinating world of DNA repeats is continuously being enriched by newly identified elements and their hypothetical or well-established biological relevance. Genomic approaches can be used for comparative studies of major repeats in any group of genomes, regardless of their size and complexity. Such studies are particularly fruitful in large genomes, and useful mainly in crop plants where they provide a rich source of molecular markers or information on indispensable genomic components (e.g., telomeres, centromeres, or ribosomal RNA genes). Surprisingly, in Allium species, a comprehensive comparative study of repeats is lacking. Here we provide such a study of two economically important species, Allium cepa (onion), and A. sativum (garlic), and their distantly related A. ursinum (wild garlic). We present an overview and classification of major repeats in these species and have paid specific attention to sequence conservation and copy numbers of major representatives in each type of repeat, including retrotransposons, rDNA, or newly identified satellite sequences. Prevailing repeats in all three studied species belonged to Ty3/gypsy elements, however they significantly diverged and we did not detect them in common clusters in comparative analysis. Actually, only a low number of clusters was shared by all three species. Such conserved repeats were for example 5S and 45S rDNA genes and surprisingly a specific and quite rare Ty1/copia lineage. Species-specific long satellites were found mainly in A. cepa and A. sativum. We also show in situ localization of selected repeats that could potentially be applicable as chromosomal markers, e.g., in interspecific breeding. Full article
Show Figures

Figure 1

Open AccessArticle
Identification of QTL Related to ROS Formation under Hypoxia and Their Association with Waterlogging and Salt Tolerance in Barley
Int. J. Mol. Sci. 2019, 20(3), 699; https://doi.org/10.3390/ijms20030699 - 06 Feb 2019
Cited by 3
Abstract
Waterlogging is a serious environmental problem that limits agricultural production in low-lying rainfed areas around the world. The major constraint that plants face in a waterlogging situation is the reduced oxygen availability. Accordingly, all previous efforts of plant breeders focused on traits providing [...] Read more.
Waterlogging is a serious environmental problem that limits agricultural production in low-lying rainfed areas around the world. The major constraint that plants face in a waterlogging situation is the reduced oxygen availability. Accordingly, all previous efforts of plant breeders focused on traits providing adequate supply of oxygen to roots under waterlogging conditions, such as enhanced aerenchyma formation or reduced radial oxygen loss. However, reduced oxygen concentration in waterlogged soils also leads to oxygen deficiency in plant tissues, resulting in an excessive accumulation of reactive oxygen species (ROS) in plants. To the best of our knowledge, this trait has never been targeted in breeding programs and thus represents an untapped resource for improving plant performance in waterlogged soils. To identify the quantitative trait loci (QTL) for ROS tolerance in barley, 187 double haploid (DH) lines from a cross between TX9425 and Naso Nijo were screened for superoxide anion (O2) and hydrogen peroxide (H2O2)—two major ROS species accumulated under hypoxia stress. We show that quantifying ROS content after 48 h hypoxia could be a fast and reliable approach for the selection of waterlogging tolerant barley genotypes. The same QTL on chromosome 2H was identified for both O2 (QSO.TxNn.2H) and H2O2 (QHP.TxNn.2H) contents. This QTL was located at the same position as the QTL for the overall waterlogging and salt tolerance reported in previous studies, explaining 23% and 24% of the phenotypic variation for O2 and H2O2 contents, respectively. The analysis showed a causal association between ROS production and both waterlogging and salt stress tolerance. Waterlogging and salinity are two major abiotic factors affecting crop production around the globe and frequently occur together. The markers associated with this QTL could potentially be used in future breeding programs to improve waterlogging and salinity tolerance. Full article
Show Figures

Figure 1

Back to TopTop