Tough Hydrogels for Biomedical Applications

Message from the Guest Editors

Dear Colleagues,

This Special Issue on “Tough Hydrogels for Biomedical Applications” is dedicated to recent developments in the design, synthesis, characterization, and medical application of tough hydrogels.

Although hydrogels are widely used in various biomedical applications, conventional hydrogels are fragile and unsuitable for most load-bearing applications. Fracture energies of hydrogels are several orders of magnitude lower than those of connective tissues, which routinely experience physiological loads that are significantly higher than the failure strengths of hydrogels. Designing mechanically-tough hydrogels with exceptional recovery properties remains a keen scope of interest in the field. Recent strategies in designing tough hydrogels include interpenetrating and double-network hydrogels, nanocomposite hydrogels, topological or ring-sliding gels, tetra-arm hydrogels, and hydrogels composed of various reversible and self-healing chemistries. Potential applications for tough hydrogels include tissue engineering scaffold, drug delivery, tissue regeneration, tissue adhesive, actuator etc.

Prof. Bruce P. Lee
Dr. Yuan Liu
Dr. Weilue He
Editor-in-Chief

Prof. Dr. David Díaz Díaz
1. Institut für Organische Chemie (CH 23.2.80), Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
2. Instituto de Productos Naturales y Agrobiología (IPNA), The Spanish National Research Council (CSIC), Av. Astrofísico Francisco Sánchez, 3, 38296 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain

Message from the Editor-in-Chief

Gels (ISSN 2310-2861) is recently established international, open access journal on physical and chemical gel-based materials. The journal aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. General topics include but not limited to synthesis, characterization and applications of new organogels, hydrogels and ionic gels made either from low molecular weight compounds or polymers, composite and hybrid materials where a metal is by some means incorporated into the gel network, and computational studies of these materials in order to provide a better understanding of gelation mechanism. We cordially invite you to consider publishing with us and contribute with your own grain of sand to the advance in this fascinating field.

Author Benefits

Open Access: - free for readers, free publication for well-prepared manuscripts submitted before 1 July 2019.
High visibility: Covered by the Emerging Sources Citation Index (ESCI) in Web of Science and by Polymer Library; to be indexed in Scopus from Vol. 5 (2019). Citations available in PubMed, full-text archived in PubMed Central.
Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 18.7 days after submission; acceptance to publication is undertaken in 6.1 days (median values for papers published in this journal in the second half of 2018).

Contact Us

Gels
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland
Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
www.mdpi.com
mdpi.com/journal/gels
gels@mdpi.com