Hydrogels in Tissue Engineering

Message from the Guest Editor

Polymers form the foundation of regenerative medicine as a supportive matrix for cell immobilization and growth factor delivery. The fate of implanted cells is mediated by cell–matrix interaction at multiple scales and timed-release of growth factors to guide the differentiation and maturation of cells. As a result, recently there has been great interest in polymers with a hierarchical structure to mimic the complex interaction of cells with their microenvironment and polymers that can locally release growth factors to specific cells. Related topics include polymers with a hierarchical structure, hybrid and degradable scaffolds, load-bearing and self-healing scaffolds, polymers for cell encapsulation and biofabrication, polymers for micro-patterning, microfluidic devices, and high-throughput screening, injectable, and in situ hardening polymers for minimally-invasive applications, polymers that modulate the body’s immune response, and polymeric delivery systems for spatiotemporal delivery of growth factors.
Editor-in-Chief

Prof. Dr. David Díaz Díaz
1. Institut für Organische Chemie (CH 23.2.80), Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätstr. 31, D-93053 Regensburg, Germany
2. Instituto de Productos Naturales y Agrobiología (IPNA), The Spanish National Research Council (CSIC), Av. Astrofísico Francisco Sánchez, 3, 38296 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain

Message from the Editor-in-Chief

Gels (ISSN 2310-2861) is recently established international, open access journal on physical and chemical gel-based materials. The journal aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. General topics include but not limited to synthesis, characterization and applications of new organogels, hydrogels and ionic gels made either from low molecular weight compounds or polymers, composite and hybrid materials where a metal is by some means incorporated into the gel network, and computational studies of these materials in order to provide a better understanding of gelation mechanism. We cordially invite you to consider publishing with us and contribute with your own grain of sand to the advance in this fascinating field.

Author Benefits

Open Access: - free for readers, free publication for well-prepared manuscripts submitted before 1 July 2019.

High visibility: Covered by the Emerging Sources Citation Index (ESCI) in Web of Science and by Polymer Library; to be indexed in Scopus from Vol. 5 (2019). Citations available in PubMed, full-text archived in PubMed Central.

Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 18.7 days after submission; acceptance to publication is undertaken in 6.1 days (median values for papers published in this journal in the second half of 2018).

Contact Us

Gels
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland
Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
www.mdpi.com
mdpi.com/journal/gels
gels@mdpi.com