Special Issue

Non-equilibrium Thermodynamics and Monte Carlo for Electronic and Electrochemical Processes

Message from the Guest Editor

One of the most powerful methods to capture stochastic processes is the Monte Carlo (MC) method. MC methods come in multiple flavors and allow for studying any system of interest based on state transition models. In particular in recent years, MC methods have been applied to study the dynamics of electro(chemical) processes in order to gain insight into the importance of out-of-equilibrium properties. This Special Issue aims to cover recent advances and present novel techniques for the usage of Monte Carlo methods in order to study out-of-equilibrium electronic and electrochemical processes at the nanoscale. In particular, the analysis of the charge and exciton dynamics in molecular electronics, as well as the reaction dynamics in electrochemical reaction networks, with the help of Monte Carlo methods, are scope of this

Guest Editor

Special Issue.

Prof. Dr. Alessio Gagliardi

Electrical and Computer Engineering Department, Technische Universität München, Karlstrasse 45, 80333 Munich, Germany

Deadline for manuscript submissions

closed (20 December 2021)

an Open Access Journal by MDPI

Impact Factor 2.0 CiteScore 5.2 Indexed in PubMed

mdpi.com/si/56045

Entropy
Editorial Office
MDPI, Grosspeteranlage 5
4052 Basel, Switzerland
Tel: +41 61 683 77 34
entropy@mdpi.com

mdpi.com/journal/entropy

an Open Access Journal by MDPI

Impact Factor 2.0 CiteScore 5.2 Indexed in PubMed

About the Journal

Message from the Editor-in-Chief

The concept of entropy is traditionally a quantity in physics that has to do with temperature. However, it is now clear that entropy is deeply related to information theory and the process of inference. As such, entropic techniques have found broad application in the sciences.

Entropy is an online open access journal providing an advanced forum for the development and/or application of entropic and information-theoretic studies in a wide variety of applications. Entropy is inviting innovative and insightful contributions. Please consider Entropy as an exceptional home for your manuscript.

Editor-in-Chief

Prof. Dr. Kevin H. Knuth

Department of Physics, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA

Author Benefits

Open Access:

free for readers, with article processing charges (APC) paid by authors or their institutions.

High Visibility:

indexed within Scopus, SCIE (Web of Science), Inspec, PubMed, PMC, Astrophysics Data System, and other databases.

Journal Rank:

JCR - Q2 (Physics, Multidisciplinary) / CiteScore - Q1 (Mathematical Physics)

