# **Special Issue**

# **Shortcuts to Adiabaticity**

## Message from the Guest Editors

Shortcuts to adiabaticity (STA) are a set of techniques to get the same results as the adiabatic methods in a short time, allowing for some transient excitations. The main approaches are based on invariants, fast-forward or counterdiabatic driving, inverse engineering, and local adiabatic methods, possibly hybridized with optimal control theory, perturbative, iterative, Lie-algebraic, and variational methods. Most of these approaches produce families of parameter paths, which can be used to optimize resilience with respect to noise and perturbations. Shortcuts play a very practical role, but also imply fundamental questions such as determining the trade-off relations and limits for process time. energy consumption, or information needed. This Special Issue will reflect the current, rich scenario of methods and applications of shortcuts to adiabaticity.

#### **Guest Editors**

Prof. Dr. J. Gonzalo Muga

Prof. David Guéry-Odelin

Dr. Andreas Ruschhaupt

## Deadline for manuscript submissions

closed (31 December 2020)



an Open Access Journal by MDPI

Impact Factor 2.0 CiteScore 5.2 Indexed in PubMed



mdpi.com/si/26481

Entropy
Editorial Office
MDPI, Grosspeteranlage 5
4052 Basel, Switzerland
Tel: +41 61 683 77 34
entropy@mdpi.com

mdpi.com/journal/ entropy





an Open Access Journal by MDPI

Impact Factor 2.0 CiteScore 5.2 Indexed in PubMed



## **About the Journal**

## Message from the Editor-in-Chief

The concept of entropy is traditionally a quantity in physics that has to do with temperature. However, it is now clear that entropy is deeply related to information theory and the process of inference. As such, entropic techniques have found broad application in the sciences.

Entropy is an online open access journal providing an advanced forum for the development and/or application of entropic and information-theoretic studies in a wide variety of applications. Entropy is inviting innovative and insightful contributions. Please consider Entropy as an exceptional home for your manuscript.

## Editor-in-Chief

Prof. Dr. Kevin H. Knuth

Department of Physics, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA

#### **Author Benefits**

## Open Access:

free for readers, with article processing charges (APC) paid by authors or their institutions.

## **High Visibility:**

indexed within Scopus, SCIE (Web of Science), Inspec, PubMed, PMC, Astrophysics Data System, and other databases.

#### Journal Rank:

JCR - Q2 (Physics, Multidisciplinary) / CiteScore - Q1 (Mathematical Physics)

