Special Issue

Lie Group Machine Learning and Lie Group Structure Preserving Integrators

Message from the Guest Editors

Machine/deep learning explores use-case extensions for more abstract spaces as graphs and differential manifolds. Recent fruitful exchanges between geometric science of information and Lie group theory have opened new perspectives to extend machine learning on Lie groups to develop new schemes for processing structured data. Structure-preserving integrators that preserve the Lie group structure have been studied from many points of view and with several extensions to a wide range of situations. Structurepreserving integrators are numerical algorithms that are specifically designed to preserve the geometric properties of the flow of the differential equation such as invariants, (multi)symplecticity, volume preservation, as well as the configuration manifold. They also naturally find applications in the extension of machine learning and deep learning algorithms to Lie group data. This Special Issue will collect long versions of papers from contributions presented during the GSI'19 conference, but it will be not limited to these authors and is open to international communities involved in research on Lie group machine learning and Lie group structurepreserving integrators.

Guest Editors

Dr. Frédéric Barbaresco Prof. Elena Cellodoni Prof. François Gay-Balmaz Prof. Joël Bensoam

Deadline for manuscript submissions closed (2 March 2020)

an Open Access Journal by MDPI

Impact Factor 2.0 CiteScore 5.2 Indexed in PubMed

mdpi.com/si/30856

Entropy Editorial Office MDPI, Grosspeteranlage 5 4052 Basel, Switzerland Tel: +41 61 683 77 34 entropy@mdpi.com

mdpi.com/journal/

entropy

an Open Access Journal by MDPI

Impact Factor 2.0 CiteScore 5.2 Indexed in PubMed

entropy

About the Journal

Message from the Editor-in-Chief

The concept of entropy is traditionally a quantity in physics that has to do with temperature. However, it is now clear that entropy is deeply related to information theory and the process of inference. As such, entropic techniques have found broad application in the sciences.

Entropy is an online open access journal providing an advanced forum for the development and/or application of entropic and information-theoretic studies in a wide variety of applications. *Entropy* is inviting innovative and insightful contributions. Please consider *Entropy* as an exceptional home for your manuscript.

Editor-in-Chief

Prof. Dr. Kevin H. Knuth

Department of Physics, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA

Author Benefits

Open Access:

free for readers, with article processing charges (APC) paid by authors or their institutions.

High Visibility:

indexed within Scopus, SCIE (Web of Science), Inspec, PubMed, PMC, Astrophysics Data System, and other databases.

Journal Rank:

JCR - Q2 (Physics, Multidisciplinary) / CiteScore - Q1 (Mathematical Physics)