Special Issue

Information Theoretic Learning and Kernel Methods

Message from the Guest Editors

Information theoretic learning (ITL) was originally derived for supervised learning applications. The idea is that the error distribution in supervised learning is often non-Gaussian, therefore traditional mean square error (MSE) is not the optimal criterion to use, and in such case the information theoretic descriptors such as entropy can provide better nonlinear models in a range of problems from system identification to classification. On the other hand, kernel methods are powerful tool for nonlinear systems modeling in machine learning community. ITL and kernel methods are efficient approaches for learning a nonlinear mapping in non-Gaussian environments. In this Special Issue, we seek contributions that apply either information theoretic descriptors or kernel methods to deal with various machine learning problems. The scope of the contributions will be very broad, including theoretical studies and practical applications to regression, classification, system identification, deep learning, unsupervised learning and reinforcement learning and so on.

Guest Editors

Prof. Dr. Badong Chen

Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049, China

Prof. Dr. Jose C. Principe

Computational NeuroEngineering Lab, University of Florida, Gainesville, FL 32611, USA

Deadline for manuscript submissions

closed (31 August 2019)

an Open Access Journal by MDPI

Impact Factor 2.0 CiteScore 5.2 Indexed in PubMed

mdpi.com/si/18356

Entropy Editorial Office MDPI, Grosspeteranlage 5 4052 Basel, Switzerland Tel: +41 61 683 77 34 entropy@mdpi.com

mdpi.com/journal/entropy

an Open Access Journal by MDPI

Impact Factor 2.0 CiteScore 5.2 Indexed in PubMed

About the Journal

Message from the Editor-in-Chief

The concept of entropy is traditionally a quantity in physics that has to do with temperature. However, it is now clear that entropy is deeply related to information theory and the process of inference. As such, entropic techniques have found broad application in the sciences.

Entropy is an online open access journal providing an advanced forum for the development and/or application of entropic and information-theoretic studies in a wide variety of applications. Entropy is inviting innovative and insightful contributions. Please consider Entropy as an exceptional home for your manuscript.

Editor-in-Chief

Prof. Dr. Kevin H. Knuth

Department of Physics, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA

Author Benefits

Open Access:

free for readers, with article processing charges (APC) paid by authors or their institutions.

High Visibility:

indexed within Scopus, SCIE (Web of Science), Inspec, PubMed, PMC, Astrophysics Data System, and other databases.

Journal Rank:

JCR - Q2 (Physics, Multidisciplinary) / CiteScore - Q1 (Mathematical Physics)

