Information-Theoretical Methods in Data Mining

Guest Editor:

Prof. Kenji Yamanishi
Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Japan
yamanishi@mist.i.u-tokyo.ac.jp

Deadline for manuscript submissions:
20 September 2019

Message from the Guest Editor

Data mining is a rapidly growing field with the aim of analyzing big data in academia and industry. In it information-theoretical methods play a key role in discovering useful knowledge from a large amount of data. For example, probabilistic modeling of data sources based on information-theoretical methods such as maximum entropy, the minimum description length principle, rate-distortion theory, Kolmogorov complexity, etc. have turned to be very effective in machine learning problems in data mining such as model selection, regression, clustering, classification, structural/relational learning, association/causality analysis, transfer learning, change/anomaly detection, stream data mining, sparse modeling, etc.

This special issue specifically emphasizes research that addresses data mining problems using information-theoretical methods. It includes research on a novel development of information-theoretical methods for specific applications to data mining, and a new data mining problem using information theory. Submissions at the boundaries of information theory, data mining, and other related areas such as machine learning, network science, etc. are also welcome.
Message from the Editor-in-Chief

The concept of entropy is traditionally a quantity in physics that has to do with temperature. However, it is now clear that entropy is deeply related to information theory and the process of inference. As such, entropic techniques have found broad application in the sciences.

Entropy is an online open access journal providing an advanced forum for the development and/or application of entropic and information-theoretic studies in a wide variety of applications. *Entropy* is inviting innovative and insightful contributions. Please consider *Entropy* as an exceptional home for your manuscript.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), MathSciNet (AMS), Inspec (IET), Scopus and other databases.

Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 19.1 days after submission; acceptance to publication is undertaken in 5 days (median values for papers published in this journal in the second half of 2018).

Contact Us

Entropy

MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland

Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
www.mdpi.com

entropy@mdpi.com

@Entropy_MDPI