Exergy: Analysis and Applications

Message from the Guest Editor

Dear Colleagues,

Exergy analysis is a powerful thermodynamic technique for assessing and improving the efficiency of processes, devices and systems, as well as for enhancing environmental and economic performance. As a multidisciplinary concept, exergy applications are observed in various fields, including mechanical and chemical engineering as well as economics, management, physics and biology. Consequently, exergy analysis is used increasingly by industries and governments throughout the world, particularly with the aim of improving energy sustainability. Research and review articles on all facets of exergy and its applications, and on exergy-related topics, are sought for this special issue.

Marc A. Rosen
Guest Editor
Editor-in-Chief

Prof. Dr. Kevin H. Knuth
Department of Physics, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA

Message from the Editor-in-Chief

The concept of entropy is traditionally a quantity in physics that has to do with temperature. However, it is now clear that entropy is deeply related to information theory and the process of inference. As such, entropic techniques have found broad application in the sciences.

Entropy is an online open access journal providing an advanced forum for the development and/or application of entropic and information-theoretic studies in a wide variety of applications. Entropy is inviting innovative and insightful contributions. Please consider Entropy as an exceptional home for your manuscript.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), MathSciNet (AMS), Inspec (IET), Scopus and other databases.

Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 19.9 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the first half of 2019).

Contact Us

Entropy
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland
Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
www.mdpi.com
entropy@mdpi.com
@Entropy_MDPI