Message from the Guest Editor

Engineering thermodynamics has been advancing, particularly since the sixties. A first step was the consideration of endoreversible engines, and reverse corresponding configurations. These phenomenological approaches are currently being improved, considering dissipative mechanisms, in order to represent more precisely the global performance of the system. More and more complex systems are being considered (for example, cascades, co- or trigeneration).

The optimization of systems and processes requires clearly defining the objectives and constraints applied to them. The efficiency concept is central to that. Three main aspects are related to particular fundamentals or engineering situations:

- fundamental physical criteria;
- environmental concerns;
- economic concerns.

Prof. Dr. Michel Feidt

Guest Editor
Message from the Editor-in-Chief

The concept of entropy is traditionally a quantity in physics that has to do with temperature. However, it is now clear that entropy is deeply related to information theory and the process of inference. As such, entropic techniques have found broad application in the sciences.

Entropy is an online open access journal providing an advanced forum for the development and/or application of entropic and information-theoretic studies in a wide variety of applications. *Entropy* is inviting innovative and insightful contributions. Please consider *Entropy* as an exceptional home for your manuscript.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), MathSciNet (AMS), Inspec (IET), Scopus and other databases.

Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 19.1 days after submission; acceptance to publication is undertaken in 5 days (median values for papers published in this journal in the second half of 2018).

Contact Us

Entropy
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland

Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
www.mdpi.com

entropy@mdpi.com
@Entropy_MDPI