Message from the Guest Editor

Dear Colleagues,

In terms of physics, the operating principle of a heat pump is the same as that of a refrigerator: Moving heat from a low-temperature level to a high-temperature level. If in a refrigerator, the cold at lower temperature is used, and a heat pump provides heat at temperatures high enough for heating. Refrigeration and heat pump systems use various types of thermodynamic processes based on vapor compression, sorption, or caloric technologies.

The purpose of this Special Issue is to highlight the results of research on how to increase the efficiency of thermodynamic processes for heat pump and refrigeration systems. While room remains for further efficiency improvements of classical thermodynamic processes, it is precisely new heat pump and refrigeration technologies that most of the major new discoveries and applications in thermodynamics are expected to yield.
Message from the Editor-in-Chief

The concept of entropy is traditionally a quantity in physics that has to do with temperature. However, it is now clear that entropy is deeply related to information theory and the process of inference. As such, entropic techniques have found broad application in the sciences.

Entropy is an online open access journal providing an advanced forum for the development and/or application of entropic and information-theoretic studies in a wide variety of applications. *Entropy* is inviting innovative and insightful contributions. Please consider *Entropy* as an exceptional home for your manuscript.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), MathSciNet (AMS), Inspec (IET), Scopus and other databases.

Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 17.8 days after submission; acceptance to publication is undertaken in 2.7 days (median values for papers published in this journal in the second half of 2019).

Contact Us

Entropy
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland
Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
www.mdpi.com
entropy@mdpi.com
@Entropy_MDPI