Energy-Efficient 5G/6G Ultra-Dense Networks: Challenges and Solutions

Guest Editors:

Prof. Dr. Howon Lee
hwlee@hknu.ac.kr

Prof. Dr. Bang Chul Jung
bcjang@cnu.ac.kr

Prof. Dr. Hyun-Ho Choi
hhchoi@hknu.ac.kr

Dr. Kuk Yeol Bae
kybae@kier.re.kr

Deadline for manuscript submissions:
closed (28 February 2022)

Message from the Guest Editors

Recently, there has been a rapid increase in the number of base stations (BSS) to support the massive amount of mobile data traffic and explosively increasing number of mobile devices in 5G/6G wireless communication systems and next-generation Internet of Things (IoT) networks. BSSs may be more densely deployed to support the enormous number of mobile devices. However, there still exist several fundamental challenges for minimizing network energy consumption, detrimental interferences, and frequent handovers. Thus, energy-efficient ultra-dense networks are being proposed to satisfy the various requirements of future wireless communication systems.

The topics of interest include, but are not limited to:

- Energy-efficient transmission/reception design
- Medium access control
- Scheduling algorithms
- Network operation and management
- Device-to-device Communications
- Uncoordinated and massive random access
- Hybrid beamforming
- Massive MIMO
- Stochastic geometry-based network modeling
- Energy-efficient fronthaul/backhaul
- Machine-learning-based network control
- UAV-based traffic offloading
- UAV-based outage compensation

Welcome to contribute.

Special Issue
Author Benefits

Open Access:— free for readers, with article processing charges (APC) paid by authors or their institutions.

High Visibility: indexed within Scopus, SCIE (Web of Science), CAplus / SciFinder, Inspec, and other databases.

Journal Rank: CiteScore - Q2 (Electrical and Electronic Engineering)

Contact Us

Electronics
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland
Tel: +41 61 683 77 34
www.mdpi.com
mdpi.com/journal/electronics
electronics@mdpi.com
@electronicsMDPI