Message from the Guest Editor

Dear Colleagues,

“Organic conductors” include various kinds of solids containing organic polymers, inorganic ions, metal complexes, and metal clusters in addition to organic molecules. Their physical properties of interest cover electrical, magnetic, structural, optical, dielectric, and mechanical properties, all of which are based on the unique aspects of molecular solids. The most prominent feature of organic conductors and their related materials is a wide variety of degrees of freedom, which enable peculiar electronic states, physical properties, and phase transitions otherwise unobserved. As a result, even an insulating organic crystalline material can be a center of interest in this field (e.g., when it provides an important piece of information concerning the mechanism of superconductivity, and other subjects of broad interest from the abovementioned point of view).
Message from the Editor-in-Chief

Crystals are a very important class of structured material, both from a scientific and technological viewpoint. In 2011, the Nobel Prize in Chemistry was awarded to Dan Schechtman for his work on quasicrystals. Our journal already expresses in its name *Crystals* that its focus centers around all aspects of this class of materials, which has fascinated humankind from its beginning. Despite decades of research on crystals, it remains a hot and fascinating research topic.

Crystals is a good platform for dissemination of knowledge in this area.

Author Benefits

Open Access:— free for readers, with article processing charges (APC) paid by authors or their institutions.

High Visibility: indexed within Scopus, SCIE (Web of Science), Inspec, CAPlus / SciFinder, and other databases.

Journal Rank: JCR - Q2 (*Crystallography*) / CiteScore - Q2 (*Condensed Matter Physics*)

Contact Us

Crystals
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland

Tel: +41 61 683 77 34
www.mdpi.com

mdpi.com/journal/crystals
crystals@mdpi.com
@Crystals_MDPI