Emissions Control Catalysis

Guest Editors:

Prof. Dr. Ioannis V. Yentekakis
Physical Chemistry and Chemical Processes Laboratory, School of Environmental Engineering, TECHNICAL UNIVERSITY OF CRETE (TUC), Greece
yyentek@isc.tuc.gr

Dr. Philippe Vernoux
Institut de Recherches sur la Catalyse et l’Environnement de Lyon, LyonTech-La Doua campus, IRCELYON, 2 avenue Albert Einstein, F-69626, Villeurbanne Cedex, France
philippe.vernoux@ircelyon.univ-lyon1.fr

Deadline for manuscript submissions:
closed (31 March 2019)

Message from the Guest Editors

“Emissions Control Catalysis” in the frame of Environmental Catalysis is continuously growing up, providing novel multifunctional, nano-structured materials, promoted by several ways (i.e., surface or support induced promotion, electrochemical promotion, alloys, etc.) in order to be very active and selective for the abatement of a variety of pollutants and greenhouse gases, such as CO, NOₓ, N₂O, NH₃, CH₄, higher hydrocarbons, Volatile Organic Compounds (VOCs) and particle matter (PM) as well as other specific pollutants emitted by industry (e.g., SOₓ, H₂S, dioxins, aromatic hydrocarbons) or landfill and wastewater treatment plants (biogas). In many cases the concept of *Cyclic Economy* is concerned in emission control catalysis strategies for the production of useful chemicals and fuels from the controlled pollutants (e.g., CO₂ hydrogenation, syngas production from biogas, etc.).