

an Open Access Journal by MDPI

Catalysts for Water-Gas Shift Reaction

Guest Editors:

Prof. Dr. Panagiotis G. Smirniotis

Dr. Devaiah Damma

Dr. Sibudjing Kawi

Dr. Minghui Zhu

Deadline for manuscript submissions: closed (30 June 2020)

Message from the Guest Editors

The majority of industrial H₂ is currently produced by methane steaming reforming (MSR) followed by water-gas shift (WGS) reaction to control the H2/CO ratio and is employed in numerous applications such as ammonia synthesis, methanol synthesis, synthetic fuels, etc. Although there is much interest in developing sustainable production from photocatalytic/electrocatalytic splitting of H₂O and biomass reforming, production of H₂ from fossil fuels (CH4, hydrocarbons and coal) will be around and expand for quite some time given its established technology and cost competitiveness. Currently, the WGS reaction is commercially performed in several stages with different catalysts to optimize the greater CO equilibrium conversion attained at lower temperatures because the reaction is exothermic and reversible. Commercially, the low-temperature WGS (LT-WGS) reaction is performed at ~190-250 °C with a Cu/ZnO/Al₂O₃ catalyst, and the high-temperature WGS (HT-WGS) reaction is performed at ~350-450 °C with a Cu promoted chromium-iron mixed oxide catalyst.

