Special Issue

Advances in Seismic Performance Analysis and Assessment of Masonry Building Structure

Message from the Guest Editors

Dear colleagues. A significant portion of the built environment is made up of masonry constructions. Recent seismic activity across the globe, which has caused dramatic damage to architectural heritage as well as human deaths and injuries, moved the scientific community in many different research fields, involving a rigorous assessment of the performance of materials and buildings. The characteristics of constructions are essential for a complete understanding of how masonry behaves when struck by both static and dynamic (such as seismic) actions. This Special Issue aims to discuss advances in seismic performance analysis of masonry building structures, as well as the different approaches to assessing their behavior. Topics include but are not limited to the following fields: Analysis of masonry building structures; Advances in an assessment procedure for masonry structures; Large-scale seismic vulnerability assessment; Experimental static and dynamic tests on masonry elements; Full-scale tests on masonry structures; Non-destructive testing methods; Structural health monitoring in masonry structures; Advanced theoretical or computational techniques; Representative case studies.

Guest Editors

Prof. Dr. Roberto Capozucca

Dr. Matija Gams

Prof. Dr. Tomislav Kišiček

Dr. Erica Magagnini

Dr. Marko Marinković

Deadline for manuscript submissions

closed (10 April 2024)

an Open Access Journal by MDPI

Impact Factor 3.1 CiteScore 4.4

mdpi.com/si/166206

Buildings Editorial Office MDPI, Grosspeteranlage 5 4052 Basel, Switzerland Tel: +41 61 683 77 34 buildings@mdpi.com

mdpi.com/journal/ buildings

an Open Access Journal by MDPI

Impact Factor 3.1 CiteScore 4.4

About the Journal

Message from the Editor-in-Chief

Current urban environments are home to multi-modal transit systems, extensive energy grids, a building stock, and integrated services. Sprawling neighborhoods are composed of buildings that accommodate living and working quarters. However, it is expected that the cities and communities of the future will face complex and enormous challenges, including maintenance, interconnectivity, resilience, energy efficiency, and sustainability issues, to name but a few. A smart city uses advanced technologies and a digital infrastructure to improve the outcomes in every aspect of a city's operations. A smart building optimizes the experience of occupants, staff, and management by using a modern and connected environment. Innovations in technology that can bring dramatic improvements to design, planning, and policy are critical in developing the cities and buildings of the future.

Editor-in-Chief

Prof. Dr. David Arditi

Construction Engineering and Management Program, Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, 3201 South Dearborn Street, Chicago, IL 60616, USA

Author Benefits

High Visibility:

indexed within SCIE (Web of Science), Scopus, Ei Compendex, Inspec, and other databases.

Journal Rank:

JCR - Q2 (Construction and Building Technology) / CiteScore - Q1 (Architecture)

Rapid Publication:

manuscripts are peer-reviewed and a first decision is provided to authors approximately 14.9 days after submission; acceptance to publication is undertaken in 2.7 days (median values for papers published in this journal in the first half of 2025).