Special Issue

Structural Vibration Serviceability and Human Comfort III

Message from the Guest Editors

Structures subjected to human activities, strong wind, heavy machines, and adjacent traffic may experience excessive vibration, causing so-called serviceability problems. To prevent unpleasant structural vibration, in recent years researchers and engineers have been paying increasing attention to vibration serviceability from various perspectives, including load models, calculation methods, and evaluation. On 24-26 October 2025, The 3rd National Conference on Vibration Serviceability of Engineering Structures was held in Wuhan, China. This Special Issue is an outcome of the conference. Topics may include, but are not limited to, the following:

- Human-induced vibration serviceability in building floors
- Vibration serviceability issues of transportation systems.
- Wind-induced vibration serviceability of high-rise buildings.
- Dynamic load modeling for vibration serviceability assessment.
- Design theory and evaluation criteria for structural vibration serviceability.
- Vibration control designs/products for serviceability improvement.
- Development and application of vibration serviceability codes for engineering structures.
- Case studies of vibration serviceability in engineering practice.

Guest Editors

Prof. Dr. Jun Chen

Prof. Dr. Qiaoyun Wu

Dr. Haoqi Wang

Deadline for manuscript submissions

1 March 2026

an Open Access Journal by MDPI

Impact Factor 3.1 CiteScore 4.4

mdpi.com/si/258215

Buildings Editorial Office MDPI, Grosspeteranlage 5 4052 Basel, Switzerland Tel: +41 61 683 77 34 buildings@mdpi.com

mdpi.com/journal/buildings

an Open Access Journal by MDPI

Impact Factor 3.1 CiteScore 4.4

About the Journal

Message from the Editor-in-Chief

Current urban environments are home to multi-modal transit systems, extensive energy grids, a building stock, and integrated services. Sprawling neighborhoods are composed of buildings that accommodate living and working quarters. However, it is expected that the cities and communities of the future will face complex and enormous challenges, including maintenance, interconnectivity, resilience, energy efficiency, and sustainability issues, to name but a few. A smart city uses advanced technologies and a digital infrastructure to improve the outcomes in every aspect of a city's operations. A smart building optimizes the experience of occupants, staff, and management by using a modern and connected environment. Innovations in technology that can bring dramatic improvements to design, planning, and policy are critical in developing the cities and buildings of the future.

Editor-in-Chief

Prof. Dr. David Arditi

Construction Engineering and Management Program, Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, 3201 South Dearborn Street, Chicago, IL 60616, USA

Author Benefits

High Visibility:

indexed within SCIE (Web of Science), Scopus, Ei Compendex, Inspec, and other databases.

Journal Rank:

JCR - Q2 (Construction and Building Technology) / CiteScore - Q1 (Architecture)

Rapid Publication:

manuscripts are peer-reviewed and a first decision is provided to authors approximately 14.9 days after submission; acceptance to publication is undertaken in 2.7 days (median values for papers published in this journal in the first half of 2025).