Special Issue "Development and Perspectives of Atomic and Molecular Databases - Series II"

A special issue of Atoms (ISSN 2218-2004).

Deadline for manuscript submissions: closed (31 December 2022) | Viewed by 8920

Special Issue Editor

Physics Center, Venezuelan Institute for Scientific Research (IVIC), Caracas 1020, Venezuela
Interests: computation of atomic data for astrophysical applications; X-ray astrophysics; astrophysical opacities; high-density effects in plasmas; surface astrochemistry; mathematical and computational biology; scientific databases; scientific data assessment; web data services; data science; student
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Compilations of atomic and molecular (A&M) data are of vital importance in several scientific fields (e.g., astrophysics, astrochemistry, atmospheric physics, and fusion) and in industrial applications dealing with lasers and lighting. Seminal initiatives were the tables of atomic energy levels by Charlotte E. Moore (1949) and of atomic transition probabilities by Wiese, Smith, and Glennon (1966) at the National Bureau of Standards (NBS), now the National Institute of Standards and Technology (NIST). With the advent of the Internet and the World Wide Web, numerous online A&M databases have become available to address an ever-growing demand for accurate and complete datasets. In the present Special Issue of Atoms, we intend to present a comprehensive review of the state, development, and future perspectives of such A&M databases by evaluating their data models; metadata; data collection, curation, and assessment schemes; web services and data transfer protocols; interoperability; and workspaces. We are also interested in the data-user’s point of view by comparing the A&M databases incorporated in plasma modeling codes. We therefore welcome contributions to this timely anthology in the form of reviews, research reports, short communications, and comments.

Dr. Claudio Mendoza
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atoms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1500 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • A&M databases
  • data collection
  • data curation
  • data assessment
  • data transfer
  • plasma modeling codes
  • interoperability
  • web services

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Atomic Data Assessment with PyNeb: Radiative and Electron Impact Excitation Rates for [Fe ii] and [Fe iii]
Atoms 2023, 11(4), 63; https://doi.org/10.3390/atoms11040063 - 01 Apr 2023
Cited by 2 | Viewed by 1205
Abstract
We use the PyNeb 1.1.16 Python package to evaluate the atomic datasets available for the spectral modeling of [Fe ii] and [Fe iii], which list level energies, A-values, and effective collision strengths. Most datasets are reconstructed from the sources, and [...] Read more.
We use the PyNeb 1.1.16 Python package to evaluate the atomic datasets available for the spectral modeling of [Fe ii] and [Fe iii], which list level energies, A-values, and effective collision strengths. Most datasets are reconstructed from the sources, and new ones are incorporated to be compared with observed and measured benchmarks. For [Fe iii], we arrive at conclusive results that allow us to select the default datasets, while for [Fe ii], the conspicuous temperature dependency on the collisional data becomes a deterrent. This dependency is mainly due to the singularly low critical density of the 3d7a4F9/2 metastable level that strongly depends on both the radiative and collisional data, although the level populating by fluorescence pumping from the stellar continuum cannot be ruled out. A new version of PyNeb (1.1.17) is released containing the evaluated datasets. Full article
Show Figures

Figure 1

Article
Ideas and Tools for Error Detection in Opacity Databases
Atoms 2023, 11(2), 27; https://doi.org/10.3390/atoms11020027 - 02 Feb 2023
Cited by 1 | Viewed by 1070
Abstract
In this article, we propose several ideas and tools in order to check the reliability of radiative opacity and atomic physics databases. We first emphasize that it can be useful to verify that mathematical inequalities, which impose lower and upper bounds on the [...] Read more.
In this article, we propose several ideas and tools in order to check the reliability of radiative opacity and atomic physics databases. We first emphasize that it can be useful to verify that mathematical inequalities, which impose lower and upper bounds on the Rosseland and/or Planck mean opacities, are satisfied, either for pure elements or mixtures. In the second part, we discuss the intriguing law of anomalous numbers, also named Benford’s law, which enables one to detect errors in line-strength collections, required in order to perform fine-structure calculations. Finally, we point out and illustrate the importance of quantifying the uncertainties due to interpolations in the density-temperature opacity (or more generally atomic-data) tables and performing convergence checks, which are crucial in the accuracy-completeness compromise inherent in opacity computations. Full article
Show Figures

Figure 1

Article
Using Molecular Lines to Determine Carbon and Nitrogen Abundances in the Atmospheres of Cool Stars
Atoms 2022, 10(4), 103; https://doi.org/10.3390/atoms10040103 - 27 Sep 2022
Viewed by 1107
Abstract
Simultaneous analysis of the C2 and CN molecular bands in the 5100–5200 and 7930–8100 Å spectral regions is a promising alternative for the accurate determination of the carbon (C) and nitrogen (N) abundance in the atmospheres of the solar-like stars. Practical implementation [...] Read more.
Simultaneous analysis of the C2 and CN molecular bands in the 5100–5200 and 7930–8100 Å spectral regions is a promising alternative for the accurate determination of the carbon (C) and nitrogen (N) abundance in the atmospheres of the solar-like stars. Practical implementation of this new method became possible after recent improvements of the molecular constants for both molecules. The new molecular data predicted the correct line strength and line positions; therefore, they were included in the Vienna Atomic Line Database (VALD), which is widely used by astronomers and spectroscopists. In this paper, we demonstrate that the molecular data analysis provides C and, in particular, N abundances consistent with those derived from the atomic lines. We illustrate this by performing the analysis for three stars. Our results provide strong arguments for using the combination of C2 and CN molecular lines for accurate nitrogen abundance determination keeping in mind the difficulties of using the N i lines in the observed spectra of the solar-like stars. Full article
Show Figures

Figure 1

Article
Mass Spectra Resulting from Collision Processes
Atoms 2022, 10(2), 56; https://doi.org/10.3390/atoms10020056 - 28 May 2022
Viewed by 1215
Abstract
A new database and viewer for mass spectra resulting from collision processes is presented that follows the standards of the Virtual Atomic and Molecular Data Centre (VAMDC). A focus was placed on machine read and write access, as well as ease of use. [...] Read more.
A new database and viewer for mass spectra resulting from collision processes is presented that follows the standards of the Virtual Atomic and Molecular Data Centre (VAMDC). A focus was placed on machine read and write access, as well as ease of use. In a browser-based viewer, mass spectra and all parameters related to a given measurement can be shown. The program additionally enables a direct comparison between two mass spectra, either by plotting them on top of each other or their difference to identify subtle variations in the data. Full article
Show Figures

Figure 1

Article
Superstructure and Distorted-Wave Codes and Their Applications
Atoms 2022, 10(2), 47; https://doi.org/10.3390/atoms10020047 - 06 May 2022
Cited by 2 | Viewed by 1531
Abstract
There have been many observations of the solar and astrophysical spectra of various ions. The diagnostics of these observations require atomic data that include energy levels, oscillator strengths, transition rates, and collision strengths. These have been calculated using the Superstructure and Distorted-wave codes. [...] Read more.
There have been many observations of the solar and astrophysical spectra of various ions. The diagnostics of these observations require atomic data that include energy levels, oscillator strengths, transition rates, and collision strengths. These have been calculated using the Superstructure and Distorted-wave codes. We describe calculations for various ions. We calculate intensity ratios and compare them with observations to infer electron densities and temperatures of solar plasmas. Full article
Show Figures

Figure 1

Article
Atomic Lifetime Data and Databases
Atoms 2022, 10(2), 46; https://doi.org/10.3390/atoms10020046 - 05 May 2022
Cited by 1 | Viewed by 2063
Abstract
Atomic-level lifetimes span a wide range, from attoseconds to years, relating to transition energy, multipole order, atomic core charge, relativistic effects, perturbation of atomic symmetries by external fields, and so on. Some parameters permit the application of simple scaling rules, others are sensitive [...] Read more.
Atomic-level lifetimes span a wide range, from attoseconds to years, relating to transition energy, multipole order, atomic core charge, relativistic effects, perturbation of atomic symmetries by external fields, and so on. Some parameters permit the application of simple scaling rules, others are sensitive to the environment. Which results deserve to be tabulated or stored in atomic databases? Which results require high accuracy to give insight into details of the atomic structure? Which data may be useful for the interpretation of plasma experiments or astrophysical observations without any particularly demanding accuracy threshold? Should computation on demand replace pre-fabricated atomic databases? Full article
Back to TopTop