Special Issue

Frontiers in Solar UV Radiation Observations, Prediction, and Personal Exposure

Message from the Guest Editor

Considerable attention has been paid to solar UV radiation in the last two decades of the 20th century. Recognition of ozone depletion led to the establishment of the Montreal Protocol. However, despite the success of the Montreal Protocol and ozone stabilization, UV radiation levels are still high. Our understanding of the links between UV radiation, ozone, and climate change is incomplete, and it is important to understand the factors affecting solar UV radiation, as well as, accurate UV measurements, and prediction. This Special Issue aims to compile a set of papers that empirically and theoretically shift the understanding of the topic of solar UV radiation observations, prediction, and personal exposure. Topics of interest for the Special Issue include but are not limited to:

- Measurements of ground-based solar UV radiation and total ozone column;
- Satellite monitoring of solar UV radiation and total ozone column;
- Modeling solar UV radiation;
- Factors affecting solar UV radiation;
- Long-term and short term solar UV radiation variability;
- The future evolution of the solar UV radiation and ozone layer;
- Measurements of personal UV exposure.

Guest Editor

Dr. Slavica Malinovic-Milicevic

The Physical Geography Department, Geographical Institute "Jovan Cvijic" Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia

Deadline for manuscript submissions

closed (31 May 2022)

an Open Access Journal by MDPI

Impact Factor 2.3 CiteScore 4.9

mdpi.com/si/99991

Atmosphere
Editorial Office
MDPI, Grosspeteranlage 5
4052 Basel, Switzerland
Tel: +41 61 683 77 34
atmosphere@mdpi.com

mdpi.com/journal/atmosphere

an Open Access Journal by MDPI

Impact Factor 2.3 CiteScore 4.9

About the Journal

Message from the Editor-in-Chief

Continued developments in instrumentation and modeling have driven atmospheric science to become increasingly more complex with a deeper understanding of concepts, mechanisms, and interactions. This is the field that innovation built and it has led to a better appreciation for the complexity with atmosphere. Human life is intertwined in this complexity as we strive to better understand our atmosphere. Climate change is constantly stretching the limits of our thinking and forcing new ideas and concepts to be played out. Welcome to the Anthropocene!

Editor-in-Chief

Dr. Daniele Contini

Institute of Atmospheric Sciences and Climate (ISAC), National Research Council (CNR), Str. Prv. Lecce-Monteroni km 1.2, 73100 Lecce, Italy

Author Benefits

Open Access:

free for readers, with article processing charges (APC) paid by authors or their institutions.

High Visibility:

indexed within Scopus, SCIE (Web of Science), Ei Compendex, GEOBASE, GeoRef, Inspec, CAPlus / SciFinder, Astrophysics Data System, and other databases.

Journal Rank:

CiteScore - Q2 (Environmental Science (miscellaneous))

