Special Issue

Atmospheric Chemistry and New Particle Formation

Message from the Guest Editor

Molecular level information about the fundamental processes of aerosol formation remains a challenging issue in climate research. This Special Issue focusses on elucidating the underlying processes from quantum chemical calculations, simulations, and experiments. We seek to cover a broad range of applications, from the reaction kinetics of individual emitted atmospheric vapors, towards understanding atmospheric cluster formation leading to new particle formation. Manuscripts related to the reaction kinetics of the compounds emitted from either the biosphere or anthropogenic sources are of interest. Studies that provide fundamental insight into inter- and intramolecular interactions between atmospheric gas phase vapors are of general interest in order to improve the understanding of the hydrogen bond. The Special Issue also covers smog chamber and flow tube simulations and experiments that yield broad insight into secondary aerosol formation. We welcome all submissions that target molecular level aerosol processes related to atmospheric chemistry and new particle formation.

Guest Editor

Dr. Jonas Elm

Department of Chemistry and iClimate, Aarhus University, Aarhus , Denmark

Deadline for manuscript submissions

closed (30 November 2019)

an Open Access Journal by MDPI

Impact Factor 2.5 CiteScore 4.6

mdpi.com/si/26388

Atmosphere MDPI, Grosspeteranlage 5 4052 Basel, Switzerland Tel: +41 61 683 77 34 atmosphere@mdpi.com

mdpi.com/journal/ atmosphere

an Open Access Journal by MDPI

Impact Factor 2.5 CiteScore 4.6

About the Journal

Message from the Editor-in-Chief

Continued developments in instrumentation and modeling have driven atmospheric science to become increasingly more complex with a deeper understanding of concepts, mechanisms, and interactions. This is the field that innovation built and it has led to a better appreciation for the complexity with atmosphere. Human life is intertwined in this complexity as we strive to better understand our atmosphere. Climate change is constantly stretching the limits of our thinking and forcing new ideas and concepts to be played out. Welcome to the Anthropocene!

Editor-in-Chief

Dr. Daniele Contini

Institute of Atmospheric Sciences and Climate (ISAC), National Research Council (CNR), Str. Prv. Lecce-Monteroni km 1.2, 73100 Lecce, Italy

Author Benefits

Open Access:

free for readers, with article processing charges (APC) paid by authors or their institutions.

High Visibility:

indexed within Scopus, SCIE (Web of Science), Ei Compendex, GEOBASE, GeoRef, Inspec, CAPlus / SciFinder, Astrophysics Data System, and other databases.

Journal Rank:

CiteScore - Q2 (Environmental Science (miscellaneous))

