Special Issue

Atmospheric Data Prediction Using Statistical, and Machine Learning Approaches of Artificial Intelligence

Message from the Guest Editor

The statistical and machine learning (ML) approaches of artificial intelligence (AI) methods have been successfully implemented in the predictive applications of several domains of Science and Engineering in recent years. The ML algorithms of Al are vital components for the development of an automated, accurate, and robust prediction system after analysis of the data for the specific application. The ML algorithms of Al are useful in the prediction requirements of atmospheric data, including atmospheric rive prediction, risk prediction of atmospheric emissions, turbulence, and hazard prediction, class prediction of atmospheric circulation pattern, prediction of geothermal heat flux, air quality monitoring, rainfall prediction, atmospheric aerosol prediction, global weather prediction system, prediction of the influence of atmospheric parameters on human health, etc.

Guest Editor

Dr. Sunil Jha

Adani Institute of Infrastructure Engineering, Adani University, Ahmedabad 382421, Gujarat, India

Deadline for manuscript submissions

closed (31 October 2023)

an Open Access Journal by MDPI

Impact Factor 2.3 CiteScore 4.9

mdpi.com/si/159255

Atmosphere
Editorial Office
MDPI, Grosspeteranlage 5
4052 Basel, Switzerland
Tel: +41 61 683 77 34
atmosphere@mdpi.com

mdpi.com/journal/atmosphere

an Open Access Journal by MDPI

Impact Factor 2.3 CiteScore 4.9

About the Journal

Message from the Editor-in-Chief

Continued developments in instrumentation and modeling have driven atmospheric science to become increasingly more complex with a deeper understanding of concepts, mechanisms, and interactions. This is the field that innovation built and it has led to a better appreciation for the complexity with atmosphere. Human life is intertwined in this complexity as we strive to better understand our atmosphere. Climate change is constantly stretching the limits of our thinking and forcing new ideas and concepts to be played out. Welcome to the Anthropocene!

Editor-in-Chief

Dr. Daniele Contini

Institute of Atmospheric Sciences and Climate (ISAC), National Research Council (CNR), Str. Prv. Lecce-Monteroni km 1.2, 73100 Lecce, Italy

Author Benefits

Open Access:

free for readers, with article processing charges (APC) paid by authors or their institutions.

High Visibility:

indexed within Scopus, SCIE (Web of Science), Ei Compendex, GEOBASE, GeoRef, Inspec, CAPlus / SciFinder, Astrophysics Data System, and other databases.

Journal Rank:

CiteScore - Q2 (Environmental Science (miscellaneous))

