Special Issue

Planetary Boundary Layer Dynamics and Their Influence on Atmospheric Pollution

Message from the Guest Editors

The planetary boundary layer (PBL), the lowest part of the atmosphere directly influenced by surface processes, plays a crucial role in modulating air quality and pollution levels. The PBL is crucial in determining how pollutants are transported vertically and horizontally and influenced by diurnal temperature changes. turbulence, and meteorological conditions. This Special Issue aims to advance the understanding of how the PBL affects pollution transport, accumulation, and dispersion across diverse environments. This Issue seeks contributions that explore the interactions between PBL dynamics and their impact on pollutant dispersion. We invite observational, experimental, and modeling studies that examine how variations in the PBL structure, such as turbulence, mixing processes, and temperature inversions, influence the behavior of pollutants and advance knowledge on improving pollution dispersion models. This Special Issue will provide valuable insights into the complex relationship between atmospheric boundary layer dynamics and air quality, aiding in developing more effective environmental policies and strategies to address atmospheric pollution challenges.

Guest Editors

Dr. Nakul Karle

Department of Earth, Environment and Equity, Howard University, 2400 6th St. NW, Washington, DC 20059, USA

Prof. Dr. Rosa Fitzgerald

Department of Physics, University of Texas at El Paso, El Paso, TX, USA

Deadline for manuscript submissions

31 January 2026

an Open Access Journal by MDPI

Impact Factor 2.3 CiteScore 4.9

mdpi.com/si/223876

Atmosphere
Editorial Office
MDPI, Grosspeteranlage 5
4052 Basel, Switzerland
Tel: +41 61 683 77 34
atmosphere@mdpi.com

mdpi.com/journal/ atmosphere

an Open Access Journal by MDPI

Impact Factor 2.3 CiteScore 4.9

About the Journal

Message from the Editor-in-Chief

Continued developments in instrumentation and modeling have driven atmospheric science to become increasingly more complex with a deeper understanding of concepts, mechanisms, and interactions. This is the field that innovation built and it has led to a better appreciation for the complexity with atmosphere. Human life is intertwined in this complexity as we strive to better understand our atmosphere. Climate change is constantly stretching the limits of our thinking and forcing new ideas and concepts to be played out. Welcome to the Anthropocene!

Editor-in-Chief

Dr. Daniele Contini

Institute of Atmospheric Sciences and Climate (ISAC), National Research Council (CNR), Str. Prv. Lecce-Monteroni km 1.2, 73100 Lecce, Italy

Author Benefits

Open Access:

free for readers, with article processing charges (APC) paid by authors or their institutions.

High Visibility:

indexed within Scopus, SCIE (Web of Science), Ei Compendex, GEOBASE, GeoRef, Inspec, CAPlus / SciFinder, Astrophysics Data System, and other databases.

Journal Rank:

CiteScore - Q2 (Environmental Science (miscellaneous))

