Special Issue # The Uncertainty of Estimating Aerosol Climate Effects Using Atmospheric Models ## Message from the Guest Editor Atmospheric models have become an important tool for studying how Earth responds to anthropogenic activities. The downside is that model-based estimations have more considerable uncertainty. These uncertainties might result from the systematic model bias, which includes the physical mechanisms described by the model code and the external forcers used as model input data. Furthermore, the model yearto-vear internal variability, which is the natural vear-toyear fluctuations during model simulation without yearto-vear changes in external forces, is also a considerable uncertainty source. Estimating aerosol effects with atmospheric models definitely involves the issues of uncertainty mentioned above. For instance, one aerosol-cloud interaction parameterization might overestimate/underestimate the aerosol Twomey effect. Sharing experiences about these uncertainties is helpful for setting up model experiments and better understanding modeled aerosol climate effects. We welcome researchers to contribute to this Special Issue by sharing their experiences. ### **Guest Editor** Prof. Dr. Xiangjun Shi School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China ## Deadline for manuscript submissions closed (13 April 2024) an Open Access Journal by MDPI Impact Factor 2.3 CiteScore 4.9 mdpi.com/si/189108 Atmosphere Editorial Office MDPI, Grosspeteranlage 5 4052 Basel, Switzerland Tel: +41 61 683 77 34 atmosphere@mdpi.com mdpi.com/journal/atmosphere an Open Access Journal by MDPI Impact Factor 2.3 CiteScore 4.9 ## **About the Journal** ## Message from the Editor-in-Chief Continued developments in instrumentation and modeling have driven atmospheric science to become increasingly more complex with a deeper understanding of concepts, mechanisms, and interactions. This is the field that innovation built and it has led to a better appreciation for the complexity with atmosphere. Human life is intertwined in this complexity as we strive to better understand our atmosphere. Climate change is constantly stretching the limits of our thinking and forcing new ideas and concepts to be played out. Welcome to the Anthropocene! #### Editor-in-Chief Dr. Daniele Contini Institute of Atmospheric Sciences and Climate (ISAC), National Research Council (CNR), Str. Prv. Lecce-Monteroni km 1.2, 73100 Lecce, Italy #### **Author Benefits** #### Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions. ### **High Visibility:** indexed within Scopus, SCIE (Web of Science), Ei Compendex, GEOBASE, GeoRef, Inspec, CAPlus / SciFinder, Astrophysics Data System, and other databases. #### Journal Rank: CiteScore - Q2 (Environmental Science (miscellaneous))