Special Issue

Black Carbon Optical Properties, Atmospheric Evolution, and Model Simulations

Message from the Guest Editors

Black carbon (BC, i.e., soot), consisting of carbonaceous fractal-like aggregates, is an important type of lightabsorbing aerosol particle. BC particles not only aggravate air pollution and pose significant health risks to the general public, but also change atmospheric radiative forcing and influence global climate. Fresh BC particles are hydrophobic but are converted into a hydrophilic state following their aging processes. Secondary aerosols coated on BC particles significantly change the optical scattering and absorption capacity of BC particles. Although great progress has been made in the field of atmospheric BC aerosols, it is highly challenging to quantify their optical properties and trace their evolution (also known as aging) processes in the air. Accurate model simulations on the mixing structures and optical properties are urgently required in climate models. Papers addressing BC observation and simulations are invited in this Special Issue, especially those concerning BC atmospheric aging, optical properties, and model simulations.

Guest Editors

Dr. Liang Xu

Dr. Yuanyuan Wang

Dr. Jian Zhang

Deadline for manuscript submissions

closed (15 September 2023)

an Open Access Journal by MDPI

Impact Factor 2.3 CiteScore 4.9

mdpi.com/si/163617

Atmosphere
Editorial Office
MDPI, Grosspeteranlage 5
4052 Basel, Switzerland
Tel: +41 61 683 77 34
atmosphere@mdpi.com

mdpi.com/journal/atmosphere

an Open Access Journal by MDPI

Impact Factor 2.3 CiteScore 4.9

About the Journal

Message from the Editor-in-Chief

Continued developments in instrumentation and modeling have driven atmospheric science to become increasingly more complex with a deeper understanding of concepts, mechanisms, and interactions. This is the field that innovation built and it has led to a better appreciation for the complexity with atmosphere. Human life is intertwined in this complexity as we strive to better understand our atmosphere. Climate change is constantly stretching the limits of our thinking and forcing new ideas and concepts to be played out. Welcome to the Anthropocene!

Editor-in-Chief

Dr. Daniele Contini

Institute of Atmospheric Sciences and Climate (ISAC), National Research Council (CNR), Str. Prv. Lecce-Monteroni km 1.2, 73100 Lecce, Italy

Author Benefits

Open Access:

free for readers, with article processing charges (APC) paid by authors or their institutions.

High Visibility:

indexed within Scopus, SCIE (Web of Science), Ei Compendex, GEOBASE, GeoRef, Inspec, CAPlus / SciFinder, Astrophysics Data System, and other databases.

Journal Rank:

CiteScore - Q2 (Environmental Science (miscellaneous))

