Advances of THz Spectroscopy

Guest Editors:

Dr. Fabio Novelli
Physical Chemistry II and ZEMOS, Ruhr University Bochum, Bochum 44801, Germany
fabio.novelli@ruhr-uni-bochum.de

Dr. Andrea Perucchi
Elettra Sincrotrone Trieste S.C.p.A., Trieste 34139, Italy
andrea.perucchi@elettra.eu

Deadline for manuscript submissions:
closed (30 June 2021)

Message from the Guest Editors

Dear Colleagues,

Important macroscopic properties, from insulation to superconductivity, magnetic properties, and biological functions, originate from collective microscopic excitations. These microscopic excitations are typically found at low energy and can be probed with—and sometimes driven by—terahertz (THz) radiation between ~0.1 and 30 THz. While the THz frequency range was called the “THz gap” because of the few intense sources available, fast-paced technical developments are now filling this important scientific gap. This is not limited to the generation and detection of THz light, but also includes astonishing developments in its manipulation at the nanoscale, by exploiting the sensing and light-confining properties of plasmons. This Special Issue is dedicated to the developments of THz spectroscopy and to the characterization of the electronic, nuclear, and dielectric properties of matter. This includes, but is not limited to, bulk- or surface-sensitive spectroscopy or microscopy techniques, and the investigation of gases, liquids, soft, and solid-state matter. We kindly invite you to contribute to this Special Issue.