Redox Regulation in a Tumor Microenvironment

Message from the Guest Editors

The tumor microenvironment (TME) has been recognized as one of the major players in tumor progression, dissemination and chemoresistance. The term TME refers to a complex and dynamic system composed of many different cell types, such as fibroblasts, immune cells and endothelial cells, which are immersed in the mesh of the extracellular matrix (ECM). The reciprocal interaction between cancer and neighbouring cells, as well as the components of ECM, can be studied from various aspects of cancer biology, but the overarching component of all these aspects is their redox nature. This is, at the same time, one of the most puzzling questions in cancer biology considering that the line between pro- and anti-tumorigenic effects of reactive oxygen species (ROS) is still poorly defined. Thus, further comprehensive fundamental and pre-clinical research is necessary in order to gain a better understanding of the redox nature of cancer initiation and progression, to exploit its vulnerability points and to anticipate and prevent potential anti-cancer therapeutic-resistant mechanisms.
Editor-in-Chief

Prof. Dr. Stanley Omaye
Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, 1664 North Virginia Street, Reno, NV 89557, USA

Message from the Editor-in-Chief

It has been recognized in medical sciences that in order to prevent adverse effects of “oxidative stress” a balance exists between prooxidants and antioxidants in living systems. Imbalances are found in a variety of diseases and chronic health situations. Our journal *Antioxidants* serves as an authoritative source of information on current topics of research in the area of oxidative stress and antioxidant defense systems. The future is bright for antioxidant research and since 2012, *Antioxidants* has become a key forum for researchers to bring their findings to the forefront.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, FSTA, PubAg, CAPlus / SciFinder, and other databases.

Journal Rank: JCR - Q1 (*Biochemistry & Molecular Biology*) / CiteScore - Q1 (*Food Science*)

Contact Us

Antioxidants
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland

Tel: +41 61 683 77 34
www.mdpi.com

mdpi.com/journal/antioxidants
antioxidants@mdpi.com
@antioxidants_OA