**Abstract: **The number of galaxies at a given flux as a function of the redshift, z, is derived when the z-distance relation is non-standard. In order to compare different models, the same formalism is also applied to the standard cosmology. The observed luminosity function for galaxies of the zCOSMOS catalog at different redshifts is modeled by a new luminosity function for galaxies, which is derived by the truncated beta probability density function. Three astronomical tests, which are the photometric maximum as a function of the redshift for a fixed flux, the mean value of the redshift for a fixed flux, and the luminosity function for galaxies as a function of the redshift, compare the theoretical values of the standard and non-standard model with the observed value. The tests are performed on the FORS Deep Field (FDF) catalog up to redshift z = 1.5 and on the zCOSMOS catalog extending beyond z = 4. These three tests show minimal differences between the standard and the non-standard models.

**Abstract: **In this paper, we consider an extended version of Whitehead’s theory of gravity in connection with the flyby anomaly. Whitehead’s theory is a linear approximation defined in a background Minkowski spacetime, which gives the same solutions as standard general relativity for the Schwarzschild and Kerr metrics cast in Kerr–Schild coordinates. For a long time and because it gives the same results for the three classical tests—perihelion advance, light bending and gravitational redshift—it was considered a viable alternative to general relativity, but as it is really a linear approximation, it fails in more stringent tests. The model considered in this paper is a formal generalization of Whitehead’s theory, including all possible bilinear forms. In the resulting theory, a circulating vector field of force in the low velocities’ approximation for a rotating planet is deduced, in addition to Newtonian gravity. This extra force gives rise to small variations in the asymptotic velocities of flybys around the Earth to be compared to the recently reported flyby anomaly.

**Abstract: **The tunnelling mechanism is today considered a popular and widely used method in describing Hawking radiation. However, in relation to black hole (BH) emission, this mechanism is mostly used to obtain the Hawking temperature by comparing the probability of emission of an outgoing particle with the Boltzmann factor. On the other hand, Banerjee and Majhi reformulated the tunnelling framework deriving a black body spectrum through the density matrix for the outgoing modes for both the Bose-Einstein distribution and the Fermi-Dirac distribution. In contrast, Parikh and Wilczek introduced a correction term performing an exact calculation of the action for a tunnelling spherically symmetric particle and, as a result, the probability of emission of an outgoing particle corresponds to a non-strictly thermal radiation spectrum. Recently, one of us (C. Corda) introduced a BH effective state and was able to obtain a non-strictly black body spectrum from the tunnelling mechanism corresponding to the probability of emission of an outgoing particle found by Parikh and Wilczek. The present work introduces the quantum corrected effective temperature and the corresponding quantum corrected effective metric is written using Hawking’s periodicity arguments. Thus, we obtain further corrections to the non-strictly thermal BH radiation spectrum as the final distributions take into account both the BH dynamical geometry during the emission of the particle and the quantum corrections to the semiclassical Hawking temperature.

**Abstract: **Light can be used as a probe to explore the structure of space-time: this is usual in astrophysical and cosmological tests; however, it has been recently suggested that this can be done also in terrestrial laboratories. Namely, the Gyroscopes In General Relativity (GINGER) project aims at measuring post-Newtonian effects, such as the gravito-magnetic ones, in an Earth-based laboratory, by means of a ring laser array. Here, we first review the theoretical foundations of the Sagnac effect, on which ring lasers are based, and then, we study the Sagnac effect in a terrestrial laboratory, emphasizing the origin of the gravitational contributions that GINGER aims at measuring. Moreover, we show that accurate measurements allow one to set constraints on theories of gravity different from general relativity. Eventually, we describe the experimental setup of GINGER.

**Abstract: **Single-vertex Feynman diagrams represent the dominant contribution to physical processes, but are frequently forbidden kinematically. This is changed when the particles involved propagate in a gravitational background and acquire an effective mass. Procedures are introduced that allow the calculation of lowest order diagrams, their corresponding transition probabilities, emission powers and spectra to all orders in the metric deviation, for particles of any spin propagating in gravitational fields described by any metric. Physical properties of the “space-time medium” are also discussed. It is shown in particular that a small dissipation term in the particle wave equations can trigger a strong back-reaction that introduces resonances in the radiative process and affects the resulting gravitational background.

**Abstract: **We present some entropy and temperature relations of multi-horizons, even including the “virtual” horizon. These relations are related to the product, division and sum of the entropy and temperature of multi-horizons. We obtain the additional thermodynamic relations of both static and rotating black holes in three- and four-dimensional (A)dS spacetime. Especially, a new dimensionless, charge-independence and T+S+ = T_S_-like relation is presented. This relation does not depend on the mass, electric charge, angular momentum and cosmological constant, as it is always a constant. These relations lead us to obtaining some interesting thermodynamic bounds of entropy and temperature, including the Penrose inequality, which is the first geometrical inequality of black holes. Besides, based on these new relations, one can obtain the first law of thermodynamics and the Smarr relation for all horizons of a black hole.