**Abstract: **Conventional splines offer powerful means for modeling surfaces and volumes in three-dimensional Euclidean space. A one-dimensional quaternion spline has been applied for animation purpose, where the splines are defined to model a one-dimensional submanifold in the three-dimensional Lie group. Given two surfaces, all of the diffeomorphisms between them form an infinite dimensional manifold, the so-called diffeomorphism space. In this work, we propose a novel scheme to model finite dimensional submanifolds in the diffeomorphism space by generalizing conventional splines. According to quasiconformal geometry theorem, each diffeomorphism determines a Beltrami differential on the source surface. Inversely, the diffeomorphism is determined by its Beltrami differential with normalization conditions. Therefore, the diffeomorphism space has one-to-one correspondence to the space of a special differential form. The convex combination of Beltrami differentials is still a Beltrami differential. Therefore, the conventional spline scheme can be generalized to the Beltrami differential space and, consequently, to the diffeomorphism space. Our experiments demonstrate the efficiency and efficacy of diffeomorphism splines. The diffeomorphism spline has many potential applications, such as surface registration, tracking and animation.

**Abstract: **In an earlier paper, we found transformation and summation formulas for 43 *q*-hypergeometric functions of 2n variables. The aim of the present article is to find convergence regions and a few conjectures of convergence regions for these functions based on a vector version of the Nova *q*-addition. These convergence regions are given in a purely formal way, extending the results of Karlsson (1976). The Γ*q*-function and the* q*-binomial coefficients, which are used in the proofs, are adjusted accordingly. Furthermore, limits and special cases for the new functions, e.g.,* q*-Lauricella functions and *q*-Horn functions, are pointed out.

**Abstract: **This article is in continuation of the authors research attempts to derive computational solutions of an unified reaction-diffusion equation of distributed order associated with Caputo derivatives as the time-derivative and Riesz-Feller derivative as space derivative. This article presents computational solutions of distributed order fractional reaction-diffusion equations associated with Riemann-Liouville derivatives of fractional orders as the time-derivatives and Riesz-Feller fractional derivatives as the space derivatives. The method followed in deriving the solution is that of joint Laplace and Fourier transforms. The solution is derived in a closed and computational form in terms of the familiar Mittag-Leffler function. It provides an elegant extension of results available in the literature. The results obtained are presented in the form of two theorems. Some results associated specifically with fractional Riesz derivatives are also derived as special cases of the most general result. It will be seen that in case of distributed order fractional reaction-diffusion, the solution comes in a compact and closed form in terms of a generalization of the Kampé de Fériet hypergeometric series in two variables. The convergence of the double series occurring in the solution is also given.

**Abstract: **This article presents a sequential growth model for the Universe that acts like a quantum computer. The basic constituents of the model are a special type of causal set (causet) called a *c*-causet. A *c*-causet is defined to be a causet that has a unique labeling. We characterize *c*-causets as those causets that form a multipartite graph or equivalently those causets whose elements are comparable whenever their heights are different. We show that a c-causet has precisely two c-causet offspring. It follows that there are 2^{n} c-causets of cardinality *n + 1*. This enables us to classify c-causets of cardinality *n + 1* in terms of n-bits. We then quantize the model by introducing a quantum sequential growth process. This is accomplished by replacing the *n*-bits by *n*-qubits and defining transition amplitudes for the growth transitions. We mainly consider two types of processes, called stationary and completely stationary. We show that for stationary processes, the probability operators are tensor products of positive rank-one qubit operators. Moreover, the converse of this result holds. Simplifications occur for completely stationary processes. We close with examples of precluded events.

**Abstract: **Currently, there is great renewed interest in proving the topological transitivity of various classes of continuous dynamical systems. Even though this is one of the most basic dynamical properties that can be investigated, the tools used by various authors are quite diverse and are strongly related to the class of dynamical systems under consideration. The goal of this review article is to present the state of the art for the class of Hölder extensions of hyperbolic systems with non-compact connected Lie group fiber. The hyperbolic systems we consider are mostly discrete time. In particular, we address the stability and genericity of topological transitivity in large classes of such transformations. The paper lists several open problems and conjectures and tries to place this topic of research in the general context of hyperbolic and topological dynamics.

**Abstract: **In 1937, Boas gave a smart proof for an extension of the Bernstein theorem for trigonometric series. It is the purpose of the present note (i) to point out that a formula which Boas used in the proof is related with the Shannon sampling theorem; (ii) to present a generalized Parseval formula, which is suggested by the Boas’ formula; and (iii) to show that this provides a very smart derivation of the Shannon sampling theorem for a function which is the Fourier transform of a distribution involving the Dirac delta function. It is also shows that, by the argument giving Boas’ formula for the derivative *f'(x)* of a function *f(x)*, we can derive the corresponding formula for *f'''(x)*, by which we can obtain an upperbound of *|f'''(x)*+3*R*^{2}f'(x)|. Discussions are given also on an extension of the Szegö theorem for trigonometric series, which Boas mentioned in the same paper.