The development of micro- and nanodevices for blood analysis is an interdisciplinary subject that demands the integration of several research fields, such as biotechnology, medicine, chemistry, informatics, optics, electronics, mechanics, and micro/nanotechnologies.

Over the last few decades, there has been a notably fast development in the miniaturization of mechanical microdevices, later known as microelectromechanical systems (MEMS), which combine electrical and mechanical components at a microscale level. The integration of microflow and optical components in MEMS microdevices, as well as the development of micropumps and microvalves, have promoted the interest of several research fields dealing with fluid flow and transport phenomena happening in microscale devices. Microfluidic systems have many advantages over their macroscale counterparts, offering the ability to work with small sample volumes, providing good manipulation and control of samples, decreasing reaction times, and allowing parallel operations in one single step. As a consequence, microdevices offer great potential for the development of portable and point-of-care diagnostic devices, particularly for blood analysis. Moreover, the recent progress in nanotechnology has contributed to its increasing popularity, and has expanded the areas of application of microfluidic devices, including in the manipulation and analysis of flows on the scale of DNA, proteins, and nanoparticles (nanoflows).

In this Special Issue, we invited contributions (original research papers, review articles, and brief communications) that focus on the latest advances and challenges in microdevices for diagnostics and blood analysis, micro- and nanofluidics, technologies for flow visualization, MEMS, biochips, and lab-on-a-chip devices and their application to research and industry. We hope to provide an opportunity to the engineering and biomedical community to exchange knowledge and information and to bring together researchers who are interested in the general field of MEMS and micro/nanotechnologies.
bring together researchers who are interested in the general field of MEMS and micro/nanofluidics and, especially, in its applications to biomedical areas.

MDPI Books offers quality open access book publishing to promote the exchange of ideas and knowledge in a globalized world. MDPI Books encompasses all the benefits of open access – high availability and visibility, as well as wide and rapid dissemination. With MDPI Books, you can complement the digital version of your work with a high quality printed counterpart.

Open Access
Your scholarly work is accessible worldwide without any restrictions. All authors retain the copyright for their work distributed under the terms of the Creative Commons Attribution License.

Author Focus
Authors and editors profit from MDPI’s over two decades of experience in open access publishing, our customized personal support throughout the entire publication process, and competitive processing charges as well as unique contributor discounts on book purchases.

High Quality & Rapid Publication
MDPI ensures a thorough review for all published items and provides a fast publication procedure. State-of-the-art research and time-sensitive topics are released with a minimum amount of delay.

High Visibility
Due to our global network and well-known channel partners, we ensure maximum visibility and broad dissemination. Title information of books is sent to international indexing databases and archives, such as the Directory of Open Access Books (DOAB), the Verzeichnis lieferbarer Bücher (VLB).

Print on Demand and Multiple Formats
MDPI Books are available for purchase and to read online at any time. Our print-on-demand service offers a sustainable, cost-effective and fast way to publish MDPI Books printed versions.

MDPI
St. Alban-Anlage 66
4052 Basel, Switzerland
Tel: +41 61 683 77 34
www.mdpi.com
books@mdpi.com

Learn more ⇒ mdpi.com/books