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Fuel cell

Hydrogen can be consumed by gas turbines and internal combustion engines, however, electricity
production with the use of intermediate mechanical energy conversion may result in a low
efficiency. The fuel cell is currently recognised as the most efficient way to consume hydrogen
onboard ship due to the electrochemical kinetics of hydrogen [1]. Utilising hydrogen onboard
with fuel cell systems is already commercially available, with examples of hydrogen-powered
ships including Nemo H,, FCS Alsterwasser and SF-BREEZEas [2][3][4]. When consuming pure
hydrogen in a fuel cell, both fuel cells show a similar efficiency of approximately 40-60%
depending on the fuel purity, with water the only by-product generated from the process in
addition to heat [5][6][7][8]. Hydrogen is a compatible fuel with the major fuel cell systems
excluding DMFC. PEMFC is an ideal solution for consuming hydrogen onboard due to the low
operating temperature (65-85°C) and maturity in application [9][10][11][12]. However, PEMFC
can only be operated with pure hydrogen which limits the use of PEMFC to small size ferry ships
and yacht. Regarding the low energy density issue brought by the challenges in storage of
hydrogen onboard, the application of MCFC and SOFC systems with higher energy density fuels is
currently under investigation and has been seen as a solution for long-distance shipping [13].

Among all hydrocarbons, natural gas is one of the most attractive fuels for direct operation on
fuel cells, because it is one of the most widespread alternative fuels, cheap, and its simple
molecular structure poses lesser challenges than heavier hydrocarbons. Direct-methane SOFCs
have been the focus of considerable attention in the 21t century. Nickel-based anodes are
currently the most common anode used for SOFC due to its low cost and excellent catalytic
properties for the reforming and electrochemical reactions [14]. Experimental research has
indicated that SOFCs with Ni-based anodes can be operated stably with methane at intermediate
temperatures (600-800°C) [15][16][17]. The most critical challenge arising from direct feed of
methane to SOFC is the faster cell degradation due to carbon deposition at the anode. Surface
carbon can largely reduce the efficiency of the system by blocking the access of reactants to
reaction sites [18]. In recent years, effort has been devoted to improving the anode activity and
stability of SOFC with natural gas fuel including incorporating an additional functional layer on
Ni-based anodes [19][20][21], incorporating Sn addition to the nickel-based anode [22][23], and
alternative anodes for direct-methane SOFCs [24][25][26].



Methanol can be consumed as a direct fuel or raw material for hydrogen production. In fuel
processor—fuel cell systems, methanol will be first converted into hydrogen rich gas through
steam reforming, or partial oxidation, or autothermal reforming. The converting process can be
conducted either in a separate processing system or integrated within the fuel cell system. Then,
the H; rich gas will be fed to the fuel cell to generate electricity after remove impurities present
in the source fuel. High-temperature fuel cells, such as HT-PEMFC and SOFC, are more suitable
for the application of methanol in the fuel processor—fuel cell systems [27][28][29][30]. The
high-temperature fuel cells have a better capability of thermally integrated methanol reforming
and more manageable tolerance against fuel contaminants with a high efficiency (30-50%). In
addition, methanol can also be directly consumed in the direct methanol fuel cells (DMFCs)
without reforming. However, the problems that occur in DMFC including unfavourable methanol
crossover, poor oxidation kinetics and low activity catalysts lead to a poor efficiency of the system
(20-30%) [31][32].

The last selected alternative fuel tested with FC is ammonia. Ammonia is easy to be cracked into
hydrogen at high temperature. The thermal decomposition of ammonia is starting at 405°C and
almost complete conversion can be achieved at temperatures above 590°C [33][34]. Therefore,
one of the main options for the direct use of ammonia as fuel is the SOFC. The normal working
temperature of SOFC is in the range of 650°C to 850°C and the decomposition of ammonia can
take place in the fuel cell. Another advantage of utilising ammonia with SOFC is no high cost
catalysts are required to reach high conversion of ammonia. Numerous studies have been
conducted on the thermal decomposition of ammonia with different catalysts. Nickel and yttria
stabilised zirconia (YSZ) has been proven to be a very efficient catalyst and over 90% ammonia
cracking can be achieved for ammonia SOFC at a working temperature of 800°C [35][36][37][38].
Experimental test results also indicated that NOx emissions in the off-gas of ammonia SOFC can
be prevented when the iron-based catalyst has been used as anode in SOFC [39][40]. Another FC
that attract attention from researchers is alkaline electrolyte direct ammonia fuel cells, it is
reported that one of the earliest alkaline electrolyte direct ammonia fuel cells were investigated
in the 1960s [41]. Alkaline electrolyte direct ammonia fuel cells can be operated at low or
medium level temperatures because the ammonia in the anode is reacting directly with
hydroxide ions through the alkaline membrane instead of cracking ammonia into hydrogen.
However, the issues of low catalytic activity of the electro-catalysts and the difficulty of ammonia
oxidation at low temperatures are the key barriers for alkaline electrolyte direct ammonia fuel
cell to consume ammonia at a high efficiency [42]. Up to date experimental results indicated that
the performance of alkaline electrolyte direct ammonia full cell (15-30%) is worse than SOFC
(30-60%) [43][44][45][46]. Recent studies showed the possibility of improving the efficiency of
membrane electrolyte direct ammonia full cell, a newly designed anion conducting electrolyte
based 5-cell direct type fuel cell stack has been reported to reach the energy efficiency of 52.4%
with ammonia [47].

Internal combustion engine

To consume LNG fuel, ships are required to have a gas-powered energy system which generally
composed of the fuel storage system, the engine system, the bunker station, the pipe system and



generator sets. Depending on the working principle and the fuel type consumed by the main
engine, its systems used by LNG-fuelled vessels can generally be classified into two groups
dual-fuel systems and pure gas system. One main characteristic of the dual-fuel energy systems
used on board is the two independent fuel storages and supply systems. The concept behind this
design is to allow the ship to switch flexibly between consuming conventional fuel oil and LNG
fuel. The dual-fuel system can run in either diesel or gas mode. In gas mode, fuel oil is used only
as ‘pilot oil’ and the total amount of fuel oil in this mode is less than 1 per cent of total fuel [48].
A pure-gas system is today commonly used by inland waterway or costal working vessels. The
design of low-pressure four-stroke pure-gas engines is very similar to that of the four-stroke
dual-fuel engine, but it can operate only in gas mode. The cycle Otto/Miller is the basis for the
operation of this engine. In the pure-gas system, the pure-gas engine system uses a spark plug to
ignite the fuel gas in the combustion chamber [49].

One of the most attractive advantages of biodiesel as an alternative fuel is that it can be
consumed directly in existing diesel-based internal combustion. However, the challenges and
difficulties are also associated with the use of biodiesel like cold start problems, low calorific
value, difficulty in fuel pumping lead by high viscosity [50]. These problems can be solved by
mixing biodiesel with diesel fuel. Currently, primary marine engine makers, such as MAN,
Wartsila, Yanmar, Cummins, Caterpillar, etc., have claimed that their engines can use 5-30% and
even up to 100% biodiesel blends with or without engine modifications [51].

Existing studies showed that ammonia can be implemented as fuel along or blended with other
fuels in either spark-ignition (SI) or compression-ignition (Cl) combustion schemes. However, the
combustion properties of ammonia have led to some technological barriers to effectively
consuming ammonia in engine systems, such as high auto-ignition temperature, narrow
flammability limits, low flame speed and toxicity [52]. Experimental results from [53] indicated
that limited by the low flame speed utilising ammonia independently in Sl engine will result in
deterioration in engine performance due to incomplete combustion. There are several studies
investigated the use of pure ammonia in Cl engine, for example, [54], [52] and [55]. However, the
outcomes of the studies were disappointed. Compressions ignition of pure ammonia in existing
diesel engines is difficult to achieve since the high auto-ignition temperature and narrow
flammability limits. The test results showed that successful ammonia compression ignition
operation could only be observed under extremely high compression ratios from 35:1 to 100:1
[56]. To circumvent the challenges associated with the unfavourable combustion properties of
ammonia, the combination of ammonia with combustion promoters has been adopted to
improve the combustibility of ammonia. Hydrogen and diesel are the most commonly used
combustion promoter blend with ammonia [57][58][59][60][61]. [62] investigated the
performance of ammonia/hydrogen mixtures as a fuel in an Sl-engine system. The authors
reported that blended 10 vol.% hydrogen with ammonia has significantly lowered the ignition
compression ratio to 8.9:1 from 35:1 for pure ammonia at the engine speed of 1200 rpm.
Ammonia fuelled marine engine has not been commercialised yet, Wartsila is planned to test the
world first full-scale ammonia engine in Stord, Norway during the first quarter of 2021[63].



Battery-powered system

Battery as the main source of power is the key of pure battery-powered vessels. The Nickel
manganese cobalt oxide (NMC) based Li-ion cell, Lithium iron phosphate (LFP) cell, Nickel Cobalt
Aluminium (NCA) cell are considered as the most suitable types of battery for full electricity ships
with compromise between the most important parameters of energy density, costs, safety,
availability and lifetime [64]. Recent studies and attempts made by the industry indicated that
the implementation of battery storage technologies onboard can be technically and economically
feasible [65][66][67]1[68][69][70][71]. Nevertheless, energy storage capacity and recharging speed
of electricity storage systems have been and continues to be the limiting factors for large ships.
For large ocean-going vessels, batteries are currently only used as backup power or
supplementary in the hybrid system [72]. An increasing number of studies are currently taking
place and looking deeply into solid-state battery technology [73][74]. The combination of
solid-state battery with metal-air could dramatically improve the specific energy, energy density
and safety of the cell [75]. We have reason to believe that when these technologies have
matured, vessels will be able to sail longer distances with pure electricity supply and increase
ship size for pure battery power application.
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