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Figure S1. VGG model structure
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Figure S2. Boxplots of MAE for different models with various lead times

“°(a) MAE for all TC points “(b) MAE for TD “l(c) MAE for TS
3 35

10 T — vee SE-UNet3+ 10 - e 10
g U-Net e AVR ’ -

10 20 30 40 50 60 70 10 20 30 40 50 60 70 10 20 30 40 50 60
leadtime leadtime leadtime

“°(d) MAE for STS “(e) MAE for TY “0/(f) MAE for SSTY

10 20 30 40 50 60 70 10 20 30 40 50 60 70 10 20 30 40 50 60
leadtime leadtime leadtime

Figure S3. MAE:s of different models for various TC levels: (a) All TC points, (b) TD, (c) TS, (d)
STS, (e) TY, and (f) SSTY

The MAE is also calculated for all models to assess their performance. Figures S2 and S3 show
the MAEs for different models at various lead times, as well as the mean MAEs for different models
to forecast precipitation induced by TC points with varying intensities. Similar to the RMSE analysis
results, the VGG model produced the highest average MAEs across all TC levels, followed by the
GFS model. The results indicate that UNet-based models outperform GFS models in reducing the
MAE, as all UNet-based models exhibit lower MAEs than GFS models. Figure S3a shows the mean
MAEs of all TC points, with GFS models having mean MAEs of 9.79 mm, 16.24 mm and 21.43
mm at lead times 24h, 48h and 72h, respectively. In contrast, UNet-based models demonstrate lower
mean MAEs at the same lead times. U-Net, UNet3+, SE-UNet, SE-UNet3+, AVR, and PM models
have lower MAESs than the GFS model, with reductions of 9.6%, 11.3%, 9.0%, 12.0%, 12.8%, and
13.0%, respectively. The PM models have the lowest average MAE compared with the other models,
which is consistent with the RMSE calculation results.

Figure S4 displays the MAE spatial distribution for the PM and GFS models at various lead
times. The average MAEs for the PM models at lead times of 24 h, 48 h, and 72 h are 8.39 mm,
13.99 mm, and 19.08 mm, respectively. These values are lower than the average MAEs for the GFS
models at lead times of 24 h, 48 h, and 72 h, which are 9.79 mm, 16.24 mm, and 21.43 mm,
respectively. Figures S4g, h, and 1 depict the differences between the average MAE for the PM
models and the average MAE for the GFS models. In most regions, the average MAE for the PM
models is lower than that of the GFS models, with average differences of 1.4 mm, 2.25 mm, and
2.35 mm at 24 h, 48 h, and 72 h, respectively. The difference in MAE between the PM model and
the GFS model is greater near the TC centre, as shown in Figure S4 g,h,I, suggesting that the PM
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model primarily reduces MAE in precipitation
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prediction near the TC centre.
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Figure S4. The spatial distribution of precipitation prediction MAE (mm) by PM and GFS models
with different lead times: (a) PM with 24 h, (b) PM with 48 h, (¢) PM with 72 h, (d) GFS with 24 h,
(e) GFS with 48 h, (f) GFS with 72 h. The spatial distribution of the MAE (mm) difference in
precipitation prediction between GFS model and PM model with different lead times: (g) 24 h, (h)
48 h, and (i) 72 h.
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Figure S5. The first 10 significant features for 48-hour accumulated precipitation prediction by the



models of (a) U-Net, (b) SE-UNet, (c) UNet3+, and (d) SE-UNet3+.
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Figure S6. The first 10 significant features for 72-hour accumulated precipitation prediction by the
models of (a) U-Net, (b) SE-UNet, (c) UNet3+, and (d) SE-UNet3+.



