
Supplementary Material 
Support vector regression 
Considering the regression problem, for a given training dataset D = 𝒙𝟏,𝒚𝟏 , 𝒙𝟐,𝒚𝟐 ,⋯⋯ , 𝒙𝒎,𝒚𝒎  , 𝒙  represents a vector of input meteorological data and 

crop coefficient and 𝒚  denotes the ETc value calculated by FAO-PM in the training period, we 
seek to find a function 𝑓 𝒙 , where 𝑓 𝒙 𝜔 𝒙 𝒃, 𝜔  is the weights vector norm and 𝒃 is 
a bias, such that the deviation between 𝑓 𝒙  and 𝑦 is minimized. Different from traditional 
regression models, the SVR assumes that we can tolerate a deviation of at most ε between 𝑓 𝒙  
and 𝑦. As shown in the figure (Figure S.1), this is equivalent to constructing an interval band 
of width 2𝜀 centered on 𝑓 𝒙 . If the training sample 𝒙𝒊,𝒚𝒊  fall into the subinterval band, 
then the model output 𝑓 𝒙  is considered to have correctly predicted training sample. The 
SVR problem can then be expressed as following: 𝑚𝑖𝑛𝜔, 𝑏, 𝜉 , 𝜉∗ 12 ‖𝜔‖ 𝐶 𝜉 𝜉∗  (S1)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑓 𝒙 − 𝑦 ≤ 𝜀 𝜉 , 𝑦 − 𝑓 𝒙 ≤ 𝜀 𝜉 , 𝜉 0, 𝜉∗ 0, 𝑖 1,2,⋯ ,𝑚. 
where C is the regularization constant, b is a bias, 𝜔  is the weights vector norm. The 
regularization constant determines the balance between the value of tolerable deviations 
greater than ε and the complexity of the function. The ε-insensitive loss function [1] represents 
the discrepancy between the actual calculated values (FAO-PM-ETc) and the estimated values 
(SVR-ETc). The loss function can be described by introducing (non-negative) slack variables 𝜉  
and 𝜉∗ to measure the deviation of training samples outside the ε-insensitive zone [2] (Figure 
S.1).  

 
Supplement figure S1. The left figure is a schematic representation of SVR, and the right figure 
is the ε-insensitive loss function for the SVR model [3]. The circles represent the training 
samples and the dotted lines represent the discrepancy between the actual calculated values 
(PM-FAO56-ETc) and the estimated values (SVR-ETc). 

By introducing Lagrange multipliers ( 𝛼 ,𝛼∗ ) and making their (𝜔, 𝑏, 𝜉 , 𝜉∗ ) partial 
derivatives zero the dual problem of SVR can be obtained: 



𝑚𝑎𝑥𝛼 ,𝛼∗    𝑦 𝛼∗ − 𝛼 − 𝜀 𝛼∗ + 𝛼 − 12 𝛼∗ − 𝛼 𝛼∗ − 𝛼 𝒙 ∗𝒙  (S2)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   𝛼∗ − 𝛼 = 0, 
0 ≤ 𝛼 ,𝛼∗ ≤ 𝐶 

and the solution to the SVR problem can be transformed into the following expression: 

𝑓(𝒙) = (𝛼∗ − 𝛼 )𝒙 𝒙 + 𝑏 (S3)

The kernel function allows linearly indistinguishable samples to be mapped from the 
original space to a higher dimensional feature space [4]. This feature space renders the samples 
linearly distinguishable, facilitating the application of SVR expressed as, 

𝑓(𝒙) = (𝛼∗ − 𝛼 )𝜅(𝒙 ,𝒙 ) + 𝑏 (S4)

where the 𝜅(𝒙 ,𝒙 ) is the kernel function. As mentioned before, the choice of the kernel is 
crucial to the construction of the SVR model, and the performance of different kernels varies. 
The radial basis function (RBF) kernel is defined as following: 

𝜅(𝒙 ,𝒙 ) = 𝑒𝑥𝑝(− 𝒙 − 𝒙2𝛾 ) (S5)

The SVR model's hyper-parameters include C and RBF parameter 𝛾 and ε.The structer of 
the SVR model is shown in Figure S.2. 

 

Supplement figure S2. Support vector regression structure [3]. 
 

Particle swarm optimize algorithm 
Assuming that there is a community composed of n particles in the D-dimensional search 

space, the ith particle in t iterations can be represented by a D-dimensional vector: 𝑋 =(𝑥 , 𝑥 ,···, 𝑥 ), (𝑖 = 1,2,···,𝑛) and the velocity of the i-th particle is 𝑉 = (𝑣 ,𝑣 ,···, 𝑣 ), (𝑖 =1,2,···,𝑛). The optimal solution found by the ith particle itself is called individual optimum 
value 𝑃 , and the optimal solution found by the whole particle swarm is called the global 



optimum 𝐺 , denoted as following:  𝑃 = (𝑝 ,𝑝 ,···,𝑝 ), (𝑖 = 1,2,···,𝑛) (S6)𝐺 = (𝑃 ,𝑃 ,···,𝑃 ) (S7)

The particle positions and velocities for the t+1 iteration are then updated as following: 𝑉 = 𝜔 𝑉 + 𝑐 𝜏 (𝑃 − 𝑋 ) + 𝑐 𝜏 (𝐺 − 𝑋 ) (S8)𝑋 = 𝑋 + 𝑉  (S9)

where 𝑐  and 𝑐  are the learning factors, 𝜏  and 𝜏  are uniform random numbers in the 
range of [0,1], and 𝜔 is the inertia weight.  
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