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SUPPLEMENTAL INFORMATION TO MANUSCRIPT 
 

Interpolation Method 

The temperature interpolation method used in this study involved three steps. The first step 

was to fill in missing values using data from nearby stations that have good correlation. Temperature 

data was strongly correlated (r > 0.9) at distances up to 1000 km between stations, similar to findings 

in networks of rainfall and temperature stations in Peru and Switzerland [55]. However, temperature 

interpolation was limited to stations within 100 km of each other to limit the deviation in mean 

temperature between stations, and stations with r > 0.9 were used to interpolate missing values. This 

interpolation produced 68 temperature time series with greater than 95% completion (i.e., less than 

5% of the time series had missing data) of which 61 had >99% completion. In a second round of 

interpolation, the remaining missing values were replaced using the average of the 2 measurements 

from the same month in the years before or after the missing value. Lastly, any remaining missing 

values were linearly interpolated from the first point before the missing value to the first point after 

the missing value.  

This interpolation method can be summarized as follows: gaps in time series are first filled 

in with the nearest and most highly correlated rainfall stations, followed by using the average of the 

preceding or proceeding 2 years for a given month if any missing values remained, and lastly using 

linear interpolation to resolve any remaining gaps after the second step. Temperature time series 

were then assigned to each drainage basin based on proximity to the centroid of the basin. 50 of the 

68 basins in this study had multiple NOAA stations (of the 69 stations used in this study) within 50 

km of its centroid. After the time series from the NOAA station nearest each basins’ centroid was 
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assigned to each basin, other stations’ time series were used to extend each basins’ assigned time 

series. This extension simply appended any data existing beyond the initial time series’ first or final 

date before or after the start or end of the initial time series. Time series extension was necessary to 

increase the time series’ length beyond 80 years (one AMO cycle) as 19 of the 69 NOAA stations had 

less than 80 years of recorded data. Fourteen of the 68 basins had only one NOAA station within 50 

km of its centroid and these basins’ time series thus were not extended. Four of the 68 basins did not 

have a NOAA station within 50 km (the greatest distance was 77 km) because either the basin was 

too small or the local spatial resolution of stations with long records was low. Thus, only the NOAA 

station nearest these 4 basins’ centroids was used for the temperature time series. 

Basin Delineation 

 The delineation method using the USGS Water Boundary Dataset (WBD) (used for 11 basins) 

sometimes needed approximation if a gaging station was inside a delineated drainage area rather 

than at its boundary. One basin was delineated using both the WBD and data from SWFWMD. Three 

basins were delineated by South Florida Water Management District (SFWMD). Two basins were 

springsheds and were delineated using flow nets and potentiometric surface maps by the Florida 

Department of Environmental Protection (FDEP). Lastly, two basins were delineated manually in 

QGIS with GRASS tools and digital elevations from the Shuttle Radar Topography Mission (SRTM) 

by the National Aeronautics and Space Administration (NASA). Each delineated basin was converted 

into the NAD83 / Florida GDL Albers projection.  

Detailed Methodology Work-Through 

The purpose of this section is to provide readers more details on the methodology by working 

through two of the 68 basins analyzed in this study. One basin was determined to have significant 
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evidence of FSI impacts to the water mass balance (Basin 48, Silver Springs, FL). Another basin was 

determined as unlikely to be impacted by the FSI (Basin 46, Satilla River, GA). These two basins were 

evaluated for FSI impacts by estimating long term time lag (∆𝑡 ) between 𝑅  and 𝑄௕  and by 

estimating the storage coefficient (𝑆) for each basin. Basins satisfying the following two conditions 

were considered to have evidence of FSI impacts to the water balance: 1) mean ∆𝑡 > 1 year with 

coefficient of variation < 0.3, and 2) 𝑆 > porosity (𝜂). The maximum value for 𝜂 was discussed in the 

main text as 0.4. 

Table S1: Statistics showing the quantity of missing values and the percentage of groundwater 
contribution to streamflow in the two basins. 

Basin Stream Flow Data % 
Completeness 

% GW 

Basin 46 – Satilla River, GA 100.0 55.0 
Basin 48 – Silver River, FL 100.0 97.0 

 

Water Balance 

First, baseflow (𝑄௕) was separated from streamflow using the methodology recommended 

by Nathan and McMahon [32] with filter parameter equal to 0.925. Missing values, which weren’t 

present in these 2 basins (Table S1), were linearly interpolated prior to baseflow separation. Average 

groundwater contribution to streamflow (𝑄௦ ) was determined by taking the mean value of the 

baseflow time series divided by the streamflow time series: 

% 𝐺𝑊 = 100 ∗ ൬𝑄௕𝑄௦൰௠௘௔௡ 

Time series of monthly precipitation (P) were downloaded from PRISM [33] for the period 

1895-present at the centroid of each basin. Next, evapotranspiration (ET) was estimated using 

temperature data from NOAA. These temperature datasets were interpolated using the methodology 
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described at the beginning of this Supplemental Information document. Potential ET (PET) was 

estimated using the Turc equation assuming relative humidity > 50% from Lu et al. [34] 

𝑃𝐸𝑇 = 0.013 ൬ 𝑇௠𝑇௠ + 15൰ ሺ𝑅௦ + 50ሻ 
where 𝑇௠ is daily mean air temperature and 𝑅௦ is daily solar radiation estimated from Hargreaves 

and Samani [35] 

𝑅௦ = 𝑘ோௌ𝑅௔ሺ𝑇௠௔௫ − 𝑇௠௜௡ሻ଴.ହ 

where 𝑇௠௔௫  is daily maximum temperature, 𝑇௠௜௡  is daily minimum temperature, 𝑘ோௌ  is the 

empirical radiation coefficient, and 𝑅௔  is daily extraterrestrial radiation. The empirical radiation 

coefficient was estimated from Samani [36] who used 65 weather stations in the United States to 

determine the relationship between 𝑘ோௌ and ሺ𝑇௠௔௫ − 𝑇௠௜௡ሻ with R2 = 0.70, 

𝑘ோௌ = 0.00185ሺ𝑇௠௔௫ − 𝑇௠௜௡ሻଶ − 0.0433ሺ𝑇௠௔௫ − 𝑇௠௜௡ሻ + 0.4023 

Daily extraterrestrial radiation was estimated from Allen et al. [37] under the radiation section of 

chapter 3 which outlines the procedure for estimating 𝑅௔ using the global solar constant, inverse 

relative Earth-Sun distance, sunset hour angle, latitude, and solar decimation. 

After converting PET from daily resolution to monthly resolution, ET was then estimated 

using the Choudhury [38] equation with the landscape parameter set to the default value of 1.8 

𝐸𝑇 = 𝑃ቀ1 + ൫𝑃 𝑃𝐸𝑇ൗ ൯ఈቁଵ/ఈ 

where 𝛼 is the landscape parameter. 

Next, groundwater pumping (𝑄௣) time series were created for each basin by scaling state-

level groundwater pumping data (𝑄௦௧௔௧௘) from USGS to the watershed scale using fractional areas 

𝑄௣ = 𝑄௦௧௔௧௘ 𝐴௕௔௦௜௡𝐴௦௧௔௧௘  



 

5 

where 𝐴௕௔௦௜௡ is the drainage basin area and 𝐴௦௧௔௧௘ is the area of the state that the basin is in. The 

state-level groundwater data were estimated every 5 years by USGS in the period 1950-2015. Data for 

the year 2020 was extrapolated using the best fit line from 2010 to 2015, and 𝑄௣ was assumed to be 

zero prior to 1950. 

Finally, monthly recharge ( 𝑅 ) in each basin was estimated from the watershed-scale 

parameters discussed above, 

𝑅 = 𝑃 − 𝐸𝑇 − 𝑄௣ 

and mean 𝑅 from the period of record in each basin was matched with the period of record mean 

𝑄௕.  

Time Lag Estimation 

Prior to using cross-correlation to determine ∆𝑡 between 𝑅 and 𝑄௕ , high frequencies in 

both the 𝑅 and 𝑄௕ time series were filtered out using 11 different moving average windows from 

10 to 20 years in length. The centered moving average windows were applied to the time series such 

that the beginning and end of each time series was truncated by half the length of the moving average 

window. For example, a 20 year moving average window results in a time series that begins 10 years 

later and ends 10 years earlier than the raw time series (Figure S1). Cross-correlation analysis was 

done on each of the 11 pairs of time series for each basin (one set of 𝑅 and 𝑄௕ time series for each 

of the 11 moving average windows). The time increment that gave the highest correlation between 

𝑅 and 𝑄௕ was considered the ∆𝑡 for each of the 11 sets of time series for each basin. Each basin was 

evaluated for the likelihood of having a long-term ∆𝑡 between 𝑅 and 𝑄௕ using the mean ∆𝑡 (of 

the 11 estimated values for each basin) and the coefficient of variation (CV). Basins with mean ∆𝑡 < 

1 were determined to not have a long term lag between 𝑅 and 𝑄௕, basins with mean ∆𝑡 > 1 but with 
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CV > 0.3 were determined as unlikely to have a long term lag between 𝑅 and 𝑄௕, and basins with 

mean ∆𝑡 > 1 and with CV < 0.3 were determined as likely to have a long term lag between 𝑅 and 

𝑄௕. For the 2 basins discussed in this document, only Basin 48 was determined as likely to have a long 

term lag between 𝑅 and 𝑄௕ (Table S2). Thus, only Basin 48 has satisfied the first condition for basins 

showing evidence of FSI impacts to the water balance. 

Table S2: Estimated ∆𝑡 statistics for the 11 sets of 𝑅 and 𝑄௕ time series between all 3 basins. 
Basin Mean ∆𝑡 Standard Deviation of ∆𝑡 CV of ∆𝑡 
Basin 46 – Satilla 
River, GA 

3.96 5.2 1.3 

Basin 48 – Silver River, 
FL 

18.8 0.70 0.037 

 



 

7 

 

1900 1940 1980 2020

-2
00

-1
00

0
10

0
20

0
30

0
40

0

ΔR
, Δ

Q
b (

m
3 /s

)

Basin  46

1900 1940 1980 2020

-5
0

0
50

10
0

15
0

Basin  48



 

8 

 

Figure S1: Time series of 𝑅  (black) and 𝑄௕  (red) for each basin both prior to moving average 
window (top row) and after moving average window (bottom row). A moving average window of 
20 years was used on the bottom row, and the lagged 𝑄௕  time series is shown in dark red. The 
period-of-record mean was subtracted from each time series before plotting. 
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Time series of change in storage ( ∆𝑉 ) were estimated to determine the quantity of 
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∆𝑉 = ∑ ൫𝑅ሺ𝑡௜ሻ − 𝑄௕ሺ𝑡௜ሻ൯௧೙௧బ 𝐴௕௔௦௜௡  

where 𝑡଴ is the first time point in the time series and 𝑡௡ is the final time point in the time series. 

Basins with ∆௏∆௛ > 𝜂 were considered to have evidence of FSI impacts to the water balance. Both ∆𝑉 

and ∆ℎ time series were averaged with a 10-year moving window and the long term mean was 

subtracted from both time series for each basin (Figure S2).  

The storage coefficient 𝑆 for each basin was estimated by maximizing the Nash-Sutcliffe 

efficiency (NSE) between ∆𝑉  and ∆ℎ . This estimation was performed in R using the optimize 

function which maximizes the target value (NSE in this case) by adjusting a specified variable (𝑆 in 

this case) between user-defined limits. The limits of 𝑆 were set to (0,50). This methodology led to 𝑆 

= 0.17 in Basin 46 and 𝑆 = 2.5 in Basin 48 (Table S3). For Basin 46, this value indicates that the change 

in storage is about 0.17 times the change in head in this basin, which meets expectations for 

unconfined aquifers that are not impacted by the FSI. For Basin 48, the estimated 𝑆 value suggests 

the change in storage is about 2.5 times the change in head. The FSI provides the storage mechanism 

necessary to reach this value of 𝑆 in Basin 48 by moving approximately 40 times the distance that 

the potentiometric surface moves. Thus, the value of 𝑆 in Basin 48 suggests evidence of FSI impacts, 

and Basin 48 meets the second condition needed for basins showing FSI impacts on the water balance.  

Table S3: Estimated values of 𝑆 for each basin along with the resulting NSE between the best fit ∆ℎ 
time series and the ∆𝑉 time series. 

Basin 𝑆 NSE FSI impacts 
Basin 46 – Satilla River, GA 0.171 0.84 No 
Basin 48 – Silver River, FL 2.46 0.80 Yes 
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Figure S2: Time series of ∆𝑉 (red) and ∆ℎ (black) with best fit ∆ℎ plotted as a dotted black line for 
the two basins. The solid black line multiplied by 𝑆 gives the dotted black line. NSE was estimated 
between the best fit ∆ℎ time series and the ∆𝑉 time series. 

 

FSI Impact Conclusion 

Detailed analysis for two of the 68 basins used in this study was given in this document. The 

conditions for FSI impacts to the water balance were defined as 1) ∆𝑡 > 1 year with CV < 0.3 and 2) 

𝑆 > 𝜂. The maximum value for 𝜂 was discussed in the main text as 0.4. Basin 46 (Satilla River, GA) 
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did not satisfy either condition for FSI impacts, while Basin 48 (Silver River, FL) satisfied both 

conditions for FSI impacts. Thus, Basin 48 was considered to have significant evidence of FSI impacts 

to the water balance. If one of these basins had satisfied only one of the defined conditions for FSI 

impacts, then that basin would have been determined as unlikely to be impacted by the FSI. Because 

Basin 46 satisfied neither condition, this basin was also determined as unlikely to be impacted by the 

FSI. 
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