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Text S1. Maximum Likelihood (ML) and Bayesian Markov-Chain Monte-Carlo 

(BMCMC) Methods 

 The ML method 

The ML method (Myung, 2003) is built upon the likelihood function of the occurrence 

of AMDR, which is the product of the probability density function of NS-GEV 

distribution: 
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The set of the parameters �  can then be estimated by maximizing the likelihood 

function as 
��(��;�)

��
= 0. It usually cannot be solved analytically, thus an iterative algorithm 

was employed to find the minimizer of 
��(��;�)

��
 starting with an initial guess which is based 

on the value of parameters estimated in stationary model S. 

 The B-MCMC method 

The transformation (see Eq. S1) from the prior distribution to posterior distribution is 

to multiply by its likelihood (Rasmussen and Ghahramani, 2003).  
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where �(�|�, �) ∝ �(�; �, �) is the likelihood function and �(�|�) is the prior probability 

distribution of the parameters �; t indicates the time from �� to ����. 
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Numerical iterations for exploring the posterior distribution are carried out by using 

the MCMC simulation. The essence of the MCMC algorithm is to generate a trial moving 

from the current state of the Markov Chain with a prior probability of parameters �(�|�) 

to a next proposed state with a prior probability of the proposed parameters �(��|�). In 

this study, to make full use of the knowledge, the estimated parameters of the stationary 

model were used to define the initial prior values of the nonstationary parameters which 

are drawn from uniform distributions using Latin Hypercube Sampling (LHS). Numerical 

iterations for exploring the posterior distribution are carried out by using the MCMC 

simulation with Metropolis within Gibbs sampling. The Metropolis ratio is calculated to 

accept or reject proposal status and the convergence of simulation is monitored by 

Gelman-Rubin diagnostic (Gelman & Rubin, 1992).  

This algorithm firstly starts as a random search over the entire prior distribution (�(�|�) 

of �  parameters using the LHS method then d samples are randomly assigned to � 

Markov chains and the sample with highest likelihood value will be selected as the 

starting point for each chain. To diversity the probability of the jumping direction, we 

broadly followed Sadegh, Ragno, and AghaKouchak (2017) to use two approaches to 

update the chain: some chains (N1) follow the Adaptive Metropolis (AM) approach which 

is effective for searching direction at the early stage of MCMC and the rest (N-N1) follow 

the Differential evolution (DE) approach which has a stronger potential in converging to 

the target distribution. The details are shown below (Sadegh et al., 2017): 

1) For each chain, randomly select �  samples from �  parameter spaces with Gibbs 

sampling (Gilks, Best, & Tan, 1995). 

2) For N1 chains, propose a new state ���� with a proposed set of parameters �� by using 

AM approach, i.e., ����(��) = ��(��) + (1 − �)�(0��, ��
�∑��) + ��(0��, ��

����)  where 

∑�� is the covariance matrix of ��. 

3) For the rest N-N1 chains, the new state is ����(��) = ��(��) + ��(���
− ���

) + �. 

where ∑�� is the covariance matrix of �� and � is a random number in the range of 

0~0.1; � indicates the jump factors defined as ��is a number randomly selected from 

[1.2, 2.2], �� = 2.38/√�, �� = 0.1/√� (Roberts & Rosenthal, 2009) and �� = 2.38/√2� 

(Ter Braak, 2006); and ���
 and ���

 are two samplers drawn from parameter space D 

just for pre-defining the chain update direction. 

4) Compute the Metropolis ratio 
������, ��

�����, ��
 ; if min �1,

������, ��

�����, ��
� ≥ �∗, then accept ���� and 

update the current chain where �∗ is the random number drawn from �(0,1). If not, 

reject and go back to previous step to re-propose the state. 

5) Check whether the iteration convergence or not by Gelman-Rubin convergence 

diagnostic. 
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Text S2.  Criteria for selecting best fitted models. 

In this study, we applied three criteria for selecting the best fitted model: the root mean 

squared error (RMSE), the Akaike Information Criterion (Eq. S2) and the Bayesian 

Information Criterion (Eq. S3). Small values of these criteria indicate a better model fit. 

��� = −
2

�
× �� + 2 ×

�

�
 (S2) 

��� = −2 × �� + log(�) × �, (S3) 

where �  is the number of data (113 for GB case and 129 for AU case), �� is the log-

likelihood of the model on these data and �  is the number of parameters (e.g., 3 for 

stationary model S, 4 for nonstationary model NS1 and 5 for NS3 and NS4). 

Text S3. Selection of stationary and nonstationary models and spatial patterns. 

Table S1 presents a summary of the number of ROIs of their best-fitted model with 

different regional sizes and shapes in GB and AU. In GB, there are 1416 ROIs generated 

by the spatial random sampling for grid-based data analysis (SRS-GDA) toolbox (Wang 

& Xuan, 2020) while in AU, there are 9575 ROIs.  

 

Table S1 the number of ROIs with their best-fitted model varying with regional sizes and 

shapes in GB and AU. 

GB AU 

ROI 

size 

(km2) 

S NS1 NS2 NS3 Total 
ROI size 

(km2) 
S NS1 NS2 NS3 Total 

10 32 32 12 5  125 161 300 113 51  

43 35 30 9 7  400 164 315 114 32  

87 27 39 11 4  900 162 312 115 36  

<=100 
94 

(38.7%) 

101 

(41.6%) 

32 

(13.2%) 

16 

(6.5%) 
243 500 173 341 124 41  

164 32 35 10 4  <=1,000 
660 

(25.8%) 

1268 

(49.7%) 

466 

(18.2%) 

160 

(6.3%) 
2554 

257 30 32 11 8  1,550 159 312 107 47  

366 25 43 9 4  2,450 155 309 111 50  

500 28 43 10 7  3,550 144 305 115 61  

<=500 
115 

(34.7%) 

153 

(46.2%) 

40 

(12.1%) 

23 

(6.9%) 
331 4,875 153 309 112 51  

504 28 41 7 5  <=5,000 
611 

(24.4%) 

1235 

(49.4%) 

445 

(17.8%) 

209 

(8.4%) 
2500 

660 32 36 6 7  6,350 150 307 107 61  

827 30 38 5 8  8,025 148 326 104 47  

1,025 30 38 8 5  9,900 137 325 107 56  
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to 

1,025 

120 

(37.0%) 

153 

(47.2%) 

26 

(8.0%) 

25 

(7.8%) 
324 <=10,000 

435 

(23.2%) 

958 

(51.1%) 

318 

(17.0%) 

164 

(8.7%) 
1875 

Total 329 407 98 64 898 Total 1706 3461 1229 533 6929 

ROI 

shape 

(��) 

     
ROI 

shape 

(��) 

     

0.2 25 31 9 9 74 0.2 83 201 61 33 378 

0.5 28 37 7 2 74 0.5 83 209 57 29 378 

0.8 21 37 12 4 74 0.8 84 199 66 29 378 

1.0 21 34 10 9 74 1.0 89 196 63 30 378 

1.25 26 36 7 5 74 1.25 81 205 67 25 378 

2.0 22 33 11 8 74 2.0 87 203 56 32 378 

5.0 26 30 14 4 74 5.0 77 191 65 45 378 

Total 
169 

(32.6%) 

238 

(46.0%) 

70 

(13.5%) 

41 

(7.9%) 
518 Total 

584 

(22.1%) 

1404 

(53.1%) 

435 

(16.4%) 

223 

(8.4%) 
2646 

 

Table S2 the number of ROIs where the AMRD is fitted with best-selected GEV types in 

GB and AU. 

GEV type Gumbel Fréchet 
Reversed 

Weibull 
Total 

GB 68 1116 232 1416 

AU 323 8706 546 9575 

    Out of all ROIs in GB, there are near 80% following the Fréchet distribution and around 

16% following the reversed Weibull distribution. In AU, such percentage is even higher, 

i.e., around 90% ROIs follow the Fréchet distribution and only a very small proportion 

(3%) follows the Gumbel distribution. 

 

Figure S1.  Both baseline and time-varying parameters (��, ��, ��, ��) change over 

the ROI shape indicated by the index of �� in AU.  The horizontal axis indicates the 

location index the ROIs and colour bar shows the values of parameters. 
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