1. Multivariate scattering correction

Multi-scattering correction method is a data processing method commonly used in spectral standards. The spectral
data obtained after the scattered correction can effectively eliminate the effects of scattering due to an uneven distribu-
tion of sample particles and particle size. Regarding spectral absorption information, light scattered shooting has been
used in solid mansion, slurry transmission, and reflection spectra.

This method assumes that the changes in the spectrum and the contents in the sample have a direct linear relation-
ship. The ideal spectrum of a sample must be established before use, and the spectrum of other samples should be
corrected accordingly. In practical applications, the ideal spectrum can be difficult to obtain. Since this method is only
used to correct the relative baseline translation and offset in the near -infrared spectrum of each sample, it is necessary
to calculate all the spectral arrays of specific samples to calculate all the spectrum arrays of the whole sample. The
average spectrum of spectrum is an ideal standard spectrum [1].

First, calculate the average spectrum of all samples near infrared spectrum,
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where y is the spectral value; i=1, 2, 3, ... represents the number of bands; j =1, 2, 3, ..., m represents the number

of samples.

The average spectrum was taken as the standard spectrum, and the near-infrared spectrum of each sample was
subjected to a linear regression operation with the standard spectrum to obtain the linear translation (regression con-
stant) and tilt offset (regression coefficient) of each spectrum relative to the standard spectrum.
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By subtracting the linear shift from the original spectrum of each sample and dividing by the regression coefficient
to correct the relative tilt of the baseline of the spectrum, the corrected spectrum was obtained.
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2. First derivative

In the process of spectral data acquisition and data analysis, absorption spectrum baseline drift, translation, or
background interference is common, which can be processed by derivation. With the increase in order, the sensitivity
will be improved, the resolution will be reduced, and overlapping peaks will be separated. However, this can also result
in noise problems. The increase in extreme values and spectral characteristics makes it difficult for smooth processing
to obtain ideal signal-to-noise ratio, and the data enhancement effect may not be significant. Secondly, the selection of
the experimental wavelength is also a key issue in derivative correction. If the experimental wavelength is small, the
noise is also more obvious, which has a certain influence on the actual quantitative and qualitative analyses. If the
experimental wavelength is large, the transformed wave pattern is relatively smooth, but some feature details may be
overlooked. Therefore, the process is usually to calculate the first-order derivative or the second-order derivative of the
spectrum. There are two methods to calculate the derivative of the spectrum: the direct-difference method and the
convolution method. To avoid a reduction in the characteristics in the process, the wavelength is selected as 1, so the
simple direct-difference method can be used for calculation [2].

First derivative formula:
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where y is the spectral value; and i=1, 2, 3, ... represents the band length.

3. Wavelet Inverse Transform

In recent years, wavelet theory has developed rapidly. Due to its multiresolution decomposition and good time
frequency, it has been widely adopted. Wavelet transform decomposes the spectrum into wavelet functions in different
frequency bands by multi-resolution decomposition at different scales according to the frequencies. These wavelet func-
tions are the sub-signal functions obtained by translation and scaling of a mother wavelet function and then directly
extracting the frequency band where the useful signal is located or setting the frequency band where the noise is located
to zero for wavelet reconstruction, so as to focus on any part of the signal and achieve the purpose of complete extraction
and denoising of the signal data. Therefore, the essence of the wavelet inverse transform is to project the spectrum onto



the wavelet to obtain simplified wavelet coefficients. The final signal was selected according to different needs to deal
with different wavelet coefficients, and then the spectrum was obtained by inverse transform.

The most significant difference between the Fourier transform and the wavelet transform is that the Fourier trans-
form has fewer available functions, typically only trigonometric functions, and the results are, therefore, very different.
According to the environments and use requirements, different wavelet functions can be selected, and the experimental
results closest to the ideal results can be obtained. Therefore, wavelet transform has significant advantages over Fourier
transform for time-frequency analysis.

The key to the wavelet transformation is the choice of wavelets, followed by the selection of the threshold and the
threshold function. The wavelet transformation has continuous wavelet transformation and discrete wavelet transfor-
mation. The discrete wavelet transformation is obtained from the scale of continuous wavelet transformation [3].

4. Enhanced data processing

Before analyzing the spectral data, data enhancement algorithms are typically used to reduce or eliminate some
redundant information, which can increase the difference between samples and unify the dimensional problems, so as
to improve the reproducibility and prediction ability of the model. It can also remove the unit limit of the data and
transform it into dimensionless pure values, which is convenient for the comparison or weighting of varied units or
magnitudes. Common algorithms include mean centralization, standardization, normalization, and so on. However,
since the research content was proportional, it was necessary to generalize the water samples for horizontal data pro-
cessing, that is, using the absorbance of pure aquifer samples to assess the absorbance in each proportion of mixed
samples, so as to improve the method of data enhancement. We selected the commonly used min—max normalization
method for improvement.

Min-max normalization is a linear transformation of the original data, so that the results fall within the [ 0,1] inter-
val. The improved conversion function is as follows:
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where y;, y, is the sample data of pure water, and y is mixed sample data.
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5. Extreme gradient boosting (XGBoost) algorithm

The basic principle of XGBoost [4,5]:
Create the base model of t decision tree:

fe() =wy(x),w € RT,q:R* {1,2, ..., T}

where W is the decision tree leaf vector, q is the tree structure, and T is the number of leaves. Multiple decision tree
models are composed of an additive formula for prediction. The initial prediction value:
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Add a new tree to this and deduce the following formula:
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where ?i(t) is the final result and model predictive value of the t-round. When calculating this value, the model
predictive value of the front wheel is retained, and a new tree function value is added.

To prevent the number of leaves from excessive leaf nodes, a single decision tree is overfit with XGBOOST, and
the punishment items are introduced:
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In the formula, Ris the penalty term representing the complexity of the model, yis the regularization parameter
representing the number of leaves, Ais the regularization parameter representing the weight of leaves, and wis the
value of leaf nodes. Therefore, the objective function is as follows:
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With a sub -tree, it can also be expressed as:
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It is a convex loss function to measure the difference between predicted and real values. To improve the model, we
needed to optimize this goal so that our objective function was as low as possible.

According to Taylor expansion:

L is a differential convex loss function to measure the difference between predicted value ¥; and real value y. To
improve the model, we should find f; to optimize this goal, so that our objective function is as low as possible.

According to Taylor expansion:
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Take y;, 37i(t_1) as the x, and f;(x;) as Ax asa Tyler, and the target function is expanded:
0bj© ~ By [L(yu957) + gifeCe) + S hufi )| + Q(F,) + constant

_0L(y, V) _02L(y, 9¢Y)
9i= "5 hi = EEGEEE

Since the previous differential convex loss function is the sum of the previous trees, it can be considered as a fixed
value. It is mentioned in the constant term and brought into:
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Let the partial derivative of the function in brackets to w;be zero to obtain the minimum objective function.
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The new objective function is obtained by bringing it into the original objective function:
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Obj represents how much we reduce at most on the target when we specify the structure of a tree. We can call it a
structural fraction, which is a function of scoring the tree structure. The smaller the score is, the better the structure of
the tree. According to the objective function, when the tree structure is determined, the tree structure score is only
related to the first-order and second-order reciprocals. When there are many feature nodes, we cannot enumerate all
the possibilities of the tree structure, so we choose a greedy algorithm to start iterative splitting from a single leaf node
to add nodes to the tree. The loss function of the divided nodes of the tree:

score = split(before) — split(after)

We used the following;:
1] G.? N Gr? (G, +Gp)?
score = — — _
2|, + A T Hy 24 H,+Ha+a| !
. GLZ . GRZ . . (GL+GR)2 .
The equation —— is the score of the left sub-tree; is the score of the right sub-tree; ——= is the node score
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that is not divided; y r is the complexity cost introduced by adding new leaf nodes, which can also be used as a thresh-
old. When the gain after splitting is greater than this number, splitting is selected. Our goal is to find a cut score that
maximizes the cut loss.



References

1.

Guo, Q.Q. Research on Prediction Model of Soil Organic-Matter Based on the Near-Infrared Spectroscopy Technology. Henan
Agricultural University: Zhengzhou, China, 2016.

Wang,X.M.; Zhu, B.Y; Yin, C. Application of derivative spectrometry in pharmaceutical analysis. Fujian Analysis & Testing 2001,
2, 1431-1438.

Zhou, E.B,; Li, C.G.; Zhu, H.Q. Research on Threshold Improved Denoising Algorithm Based on Lifting Wavelet Transform in
UV-Vis Spectrum. Spectroscopy and Spectral Analysis 2018, 38, 506-510.

Chen, T.Q.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International
Confer-ence on Knowledge Discovery and Data Mining, New York, United States, 13/8/2016.

Tao, M.Q,; Liu, ].X,; Wu, Y.; Ning, Z.Q.; Fang, Y.H. Application of XGBoost in Gas Infrared Spectral Recognition. Acta Optica
Sinica 2020, 40, 201-206.



