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Supplementary Materials S1: Introduction of XGBoost Algorithm

1. Introduction to XGBoost Algorithm

The XGBoost is an advanced application of the multiple model ensemble methodol-
ogy, which includes two major schools: Bagging and Boosting. The Bagging algo-
rithm gets the result by using Bootstrap sampling method to train the base classifier ac-
cording to the equal weight voting of all base classifiers. The Boosting algorithm itera-
tively trains the weak classifiers which are weighted and added them to a final strong
classifier. After the weak classifiers are added, their weights are readjusted (i.e. re-
weighting) to grant a higher weight on the misclassified inputs, to let the following weak
learners focus on the misclassified examples and improve the overall performance of the
final strong classifier. The XGBoost is a representative Boosting method.

1.1. Determination of Leaf Node Values

Based on the idea of Boosting methodology, XGBoost generates a new tree in the
direction of decreasing the residual (negative gradient) from the last training. The sum of
all tree scores is taken as the final prediction value. From the mathematics point of the
view, the algorithm is to solve a functional optimization problem, which is to achieve a
certain generalization ability while controlling the overall error of the predicted values.
Firstly, to determine the score of each node, the objective function is set as:
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Here L(¢) is the objective function with two components: 1) ;L (7;,y;) as the loss
function component to measure how well model fit on training data, in which y; is the
predicted value; y; is the label value; f}, is the k-th tree model; 2) 2(f) is the regulari-
zation component to measure complexity of trees, in which y is a regularizing term for
pruning trees; T is the total number of leaf nodes and A | w [I* is an L2 norm of leaf
scores, where 1 is a regularizing term to avoid over-fitting and w is the weight of leaf
nodes. As a boosting method, the new tree is created to fit the residual of the previous
tree. When the t-th tree is created, the predicted value can be presented as:
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The objective function with total of n samples can be written as:
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Hence, the direction of optimization is to find the f; that can minimize the L®. The
second-order Taylor expansion is presented as:
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XGBoost uses the second-order Taylor expansion to approximate L® to £®:
n
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where g; and h; are the first and second derivatives of L(y;, 37i(t_1)), respectively:
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Since the predictions and residuals from previous t-1 trees do not have impact on the
optimization of the objective function, L® can be simplified as £® without
L(ys, ﬁi(t_l)). In addition, every sample will be allocated into a leap node, thus the samples
can be grouped according to their leap nodes positions. Therefore, L®) can be trans-
formed as:
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where G; = Zielj g; represents the sum of the first-order gradients from the samples
placed at leaf node i; H; = ¥;¢ I h; represents the sum of the second-order gradients from

the samples placed at leaf node i. Let awjf:(t) = 0, the optimal weight for -th tree, w; is:
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Hence, the final optimal solution of the object function, L%, is:
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1.2. Tree Building

The most critical step when building a tree is to choose a criterion for splitting and
evaluate the quality of splitting. For instance, GBDT choose the mean squared error (MSE),
or mean absolute error (MAE) to evaluate the quality of the splitting, yet such heuristic
splitting criterion does not always relate to the loss function. However, in XGBoost, the
splitting criterion is directly linked to the loss function and it is one of the major differ-
ences between XGBoost and GBDT. Specifically, XGBoost traverses all the nodes and de-
cides whether to split the tree by evaluating the value of the Gain:
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where G, = Ye; g; or Hy, = Y h; represents the sum of the first-order or second-order
gradients from the samples placed at left leaf node L if it is split; Gg = X;egg; or Hg =

Y.icr h; represents the sum of the first-order or second-order gradients from the samples
. el ey s . (GL+GR)2 . ey
placed at right leaf node R if it is split. HytHpth represents the loss value if not splitting
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nodes after splitting. Therefore, the choice of the splitting node is to find the one that can

maximize the Gain value. y is used to control the complexity of the tree as a threshold

the node, while represents the sum of loss values from both left and right leaf

value for splitting. Additionally, if there are missing values in the training data, XGBoost
will put the missing values into L and R to calculate the scores, and the missing values
will be placed into whichever with higher scores. To sum up, the advantages of the algo-
rithm can be summarized as follows:

1. XGBoost algorithm is an integrated algorithm based on decision tree (e.g. CART),
which can solve classification and regression problems with fast training speed
and high accuracy.

2. XGBoost algorithm makes the second-order Taylor expansion of the objective func-
tion and uses the information of the first derivative and the second derivative of
the objective function, which makes the estimation of loss values more accurate.

3. XGBoost algorithm optimizes the objective function and prunes it simultaneously,
which reduces the chances of over-fitting. The terms y and T, as well as L2 norm
can limit the tree growth to reduce over-fitting.

4. When the training data is sparse, XGBoost algorithm can select the direction for
missing values, which greatly improves the efficiency of the algorithm.

5. XGBoost can use parallel computing and distributed training, which improves the
training speed of the algorithm. Its parallelism is not tree-granularity but feature
granularity parallelism. Since one of the most time-consuming steps of decision
tree learning is to sort the values of the feature to decide the best split point. Before
training, XGBoost sorts the data in advance, and then saves it as a block structure.
This structure is repeatedly used in iterations, which greatly reduces the amount
of calculation, also makes parallel possible. When splitting nodes, it is necessary to
calculate the gain of each feature to select the largest gain for splitting, then the
gain calculation of each feature can also be performed in multiple threads.

6. XGBoost algorithm also is strongly compatible and can run on Windows, MacOS,
Linux and other platforms, and supports Python, R, C++, Java, and other lan-
guages.



