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S.1 Equation Governing Multiphase Flow 

 

The multiphase system in a porous medium is assumed to be composed of two phases: water 

and NAPL. For simplicity, we consider only incompressible fluids. The equations describing 

the flow of two fluid phases in a porous medium are based on conservation of mass (Suk and 

Yeh, 2007, 2008; Suk et al., 2011): 

 

∇ ∙ 𝜌 𝑉 𝑄 ∑ 𝐸 ,  𝑖 1,2    in Ω                      (S1) 

𝑉 ∇𝑝 𝜌 𝑔∇𝑧 ,   𝑖 1,2                                  (S2) 

 



where 𝜌  is the density of phase 𝑖 [M L-3], with the subscript 𝑖 indicating the phase (1 for 

water and 2 for NAPL), 𝜙 is the effective porosity of the porous medium [L3 L-3], 𝑆  is the 

saturation of phase 𝑖 [L3 L-3], 𝑡 is time [T], 𝑄  is the source and sink term for phase 𝑖 [M L-

3 T-1], 𝐸  is the rate of mass exchange from phase 𝑗 to phase 𝑖 [M L-3 T-1], 𝑉  is the Darcy 

velocity of phase 𝑖 [L T-1], 𝑘  is the relative permeability of phase 𝑖 [-], 𝑘 is the intrinsic 

permeability tensor [L2], 𝜇  is the dynamic viscosity of phase 𝑖 [M L-1 T-1], 𝑝  is the pressure 

of phase 𝑖 [M L-1 T-2], 𝑔 is the gravitational constant [L T-2], 𝑧 is elevation [L], and Ω is an 

interested bounded area. Initial condition can be expressed as combination of pressures or 

saturations of each phases: 

 

𝑝 𝑝 , ,  𝑖=1,2     in Ω 

or 

𝑆 𝑆 , ,  𝑖=1,2     in Ω                                                (S3) 

 

where 𝑝 ,  and 𝑆 ,  are initial pressures [M L-1 T-2] and saturations [-] of phase 𝑖, respectively, 

in domain Ω. The boundary conditions for Eq. (S1) are generally given as: 

 

𝑝 𝑝 , ,  𝑖=1,2  on Γ  

𝑛 ∙ ∙ ∇𝑝 𝑞 , ,  𝑖=1,2  on Γ  

𝑛 ∙ ∇𝑝 𝜌 𝑔∇𝑧 𝑛 ∙ 𝑉 𝑞 , ,  𝑖=1,2  on Γ                        (S4) 

 

where 𝑛 is the unit outward vector normal to the boundary Γ, and 𝑝 , , 𝑞 , , and 𝑞 ,  are 

the specified pressure [M L-1 T-2] along Γ , specified pressure normal gradient [L T-1] on Γ , 

and prescribed flux [L T-1] normal to Γ  of phase 𝑖, respectively, with Γ Γ Γ Γ  being 



the boundary of domain Ω . Relative permeability relationships corresponding to the van 

Genuchten model are expressed as: 

 

𝑘 𝑆̅ / 1 1 𝑆̅ /                                        (S5) 

𝑘 𝑆̅ / 1 𝑆̅ / 1 𝑆̅ 𝑆̅ /                        (S6) 

 

where 𝑚 is the curve shape parameter. The capillary pressure-saturation relationship in the 

water-NAPL phase system follows the model of Parker et al. (1987), as follows: 

 

𝑆 1 𝛼 ℎ ,    if ℎ 0                                (S7) 

𝑆 1,    if ℎ 0                                              (S8) 

 

where 𝑛  [-] and 𝛼  [L-1] are the van Genuchten parameters and ℎ ℎ ℎ  is the 

NAPL-water capillary head [L], ℎ  is the pressure head of water phase [L], and ℎ  is the 

pressure head of NAPL phase [L]. 𝑆  is water saturation and is defined as follows: 

 

𝑆 ,   𝑆̅                                            (S9) 

 

where 𝑆  is the irreducible saturation of the water phase [-] and 𝑆  is the residual NAPL 

saturation [-]. The total velocity, 𝑉  [L T-1], given by the sum of the velocities of the two 

phases, is defined as follows: 

 

𝑉 𝑉 𝑉                                                       (S10) 



Using Eq. (S2), Eq. (S10) can be rewritten as: 

 

𝑉 ∑ ∇𝑝 𝜌 𝑔∇𝑧                                        (S11) 

 

Based on Eq. (S11), we can define the total mobility, 𝜅 [L3 T M-1], fractional mobility for 

phase 𝑖, 𝜅 , and mobility-weighted average fluid density [-], �̅� [M L-3] as follows: 

 

𝜅 ∑                                                      (S12) 

𝜅
∑

,   𝑖=1,2                                             (S13) 

�̅� 𝜅 𝜌 𝜅 𝜌                                                   (S14) 

 

Substituting Eqs. (S12)–(S14) into Eq. (S11) results in: 

 

𝑉 𝜅 ∇ 𝑝 𝑝 ∇ 𝑝 𝑝 𝜅�̅�𝑔∇𝑧                   (S15) 

 

where 𝜅 𝜅 1. If we define the total pressure, 𝑃  [M L-1 T-2], of an imaginary variable 

as follows: 

 

𝑃  𝜅 𝜅 𝑑𝜂                                   (S16) 

 

Eq. (S15) becomes: 

 



𝑉 𝜅 ∙ ∇𝑃 �̅�𝑔∇𝑧                                             (S17) 

 

The total pressure in the water and NAPL two-phase system is calculated as follows (Suk and 

Yeh, 2007; Suk and Yeh, 2008; Suk et al., 2011): 

 

∇ ∙ 𝜅 ∙ ∇𝑃 �̅�𝑔∇𝑧   in Ω                       (S18) 

 

where 𝐸  is the mass exchange from the NAPL to the water phase [M L-3 T-1]. Initial and 

boundary conditions of total pressure equation can be transformed from Eqs. (S1)-(S4) 

according to numerical schemes provided by Suk and Yeh (2008). In Eq. (S18), the total 

mobility, 𝜅 [L3 T M-1], is an independent parameter of the total pressure, 𝑃  [M L-1 T-2], and 

the equation is linear. The velocities of the water and NAPL phases determined using Eq. (S15) 

are as follows: 

 

𝑉 𝜅 𝑉 𝜅 𝜅𝜅 ∇𝑃 𝜅 𝜅 𝜌 �̅� 𝑔∇𝑧                            (S19) 

𝑉 𝜅 𝑉 𝜅 𝜅𝜅 ∇𝑃 𝜅 𝜅 𝜌 �̅� 𝑔∇𝑧                            (S20) 

 

where 𝑃 𝑃  [M L-1 T-2] is the capillary pressure of water (NAPL) and NAPL (water). 

Assuming incompressible flow and continuity of the total flux, Eq. (S19) can be substituted 

into the water-phase mass conservation equation (S1), resulting in the following water 

saturation equation: 

 

𝑉 ∙ ∇𝑆 ∇ ∙ 𝜅 𝜅𝜅 ∙ ∇𝑆 𝜅 ∇ ∙ 𝑉   

∇ ∙ 𝜅 𝜅 ∙ 𝜌 �̅� 𝑔∇𝑧                                     (S21) 



Initial and boundary conditions of water saturation equation can be obtained from Eqs. (S1)-

(S4) according to numerical schemes provided by Suk and Yeh (2008). 

 

S.2 Transport Equations for Dissolved NAPL Species and Surfactant 

 

The transport behavior of a dissolved contaminant can be described based on adsorption and 

surfactant-enhanced dissolution from the NAPL to aqueous phase, as follows: 

 

𝜌 ∇ ∙ 𝑉 𝐶 ∇ ∙ 𝜃 𝐷 ∙ ∇𝐶 𝐸   

 

Initial conditions 

𝐶 𝐶 ,   in Ω 

Boundary conditions 

𝐶 𝐶 ,   on  Γ  

𝑛 ∙ 𝜃 𝐷 ∙ ∇𝐶 𝑓 ,   on Γ  

𝑛 ∙ 𝑉 𝐶 𝜃 𝐷 ∙ ∇𝐶 𝑓 ,   on Γ                                  (S22) 

 

where 𝐶  is the concentration of the dissolved contaminant [M L-3], 𝜌  is the bulk density 

[M L-3], 𝑆  is the contaminant mass adsorbed into the soil mass [M M-1], 𝜃  is the water 

content [L3 L-3], 𝐶 ,  is initial concentration of the dissolved contaminant [M L-3] in domain 

Ω, and 𝐶 , , 𝑓 , , and 𝑓 ,  are the specified concentration [M L-3] along Dirichlet boundary 

Γ  , specified gradient concentration [M L-2 T-1] normal to Neumann boundary Γ  , and 

prescribed flux [M L-2 T-1] normal to Cauchy boundary Γ   of the dissolved contaminant, 

respectively. 𝜃 𝐷 is the dispersion coefficient [L2 T-1], which is defined as follows: 



𝜃 𝐷 𝛼 |𝑉 |𝛿 𝛼 𝛼
| |

𝜃 𝑎 𝜏𝛿                             (S23) 

 

where |𝑉 | is the magnitude of 𝑉  [L T-1], 𝛿 is the Kronecker delta tensor, 𝛼  and 𝛼  are 

the longitudinal and transverse dispersivities [L], respectively, 𝑎  is the molecular diffusion 

coefficient [L2 T-1], and 𝜏 is the tortuosity [-]. Considering linear adsorption: 

 

𝑆 𝐾 , 𝐶                                                       (S24) 

 

where 𝐾 ,  is the distribution coefficient between adsorbed and aqueous NAPL species [L3 

M-1]. Eq. (S22) can be rewritten using Eq. (S24), as follows: 

 

𝜃 𝐶 𝜌 𝐾 , 𝑉 ∇ ∙ 𝐶 𝐶 ∇ ∙ 𝑉 ∇ ∙ 𝜃 𝐷 ∙ ∇𝐶 𝐸  (S25) 

 

The mass conservation equation of a dissolved contaminant can be expressed as follows: 

 

∇ ∙ 𝜌 𝑉 𝑄                                            (S26) 

 

where 𝑄  is the source and sink term for water [M L-3 T-1]. Eq. (S25) can be rewritten using 

Eq. (S26), as follows: 

 

𝜃 𝜌 𝐾 , 𝑉 ∙ ∇𝐶 ∇ ∙ 𝜃 𝐷 ∙ ∇𝐶 𝐶 𝐸                (S27) 

 

 



To solve this equation using Lagrangian-Eulerian methods, Eq. (S27) can be expressed in the 

advective form: 

 

𝜃 𝜌 𝐾 ,
, ∇ ∙ 𝜃 𝐷 ∙ ∇𝐶 𝐶 𝐸                      (S28) 

where  

 

𝑉 ,
,

                                                   (S29) 

 

The mass exchange rate from the NAPL phase to the water phase can be determined as follows 

Zhong et al. (2003): 

 

𝐸 𝐶 𝜌 𝐶                                                 (S30) 

𝐶 𝑆ℎ,   𝑆ℎ 𝛽 𝑅 𝜃 , 𝑅                     (S31) 

𝜌 𝜌 , 𝛾𝐶                                                 (S32) 

 

where 𝐶  is the rate coefficient, which regulates the rate at which equilibrium is reached [T-

1], 𝑎  is the molecular diffusion coefficient [L2 T-1], 𝑑  is the mean particle diameter [L], 

𝑆ℎ is the Sherwood number [-], 𝑅  is the Reynolds number [-], 𝑣  is the seepage velocity 

[L T-1], 𝜌  is the water density [M L-3], 𝜇  is the dynamic viscosity of water [M L-1 T-1], 𝜃  

is the NAPL phase volumetric content [-], 𝜌   is the equilibrium concentration of NAPL 

species in the water phase (solubility limit) [M L-3], 𝛽 , 𝛽  and 𝛽  are dimensionless fitting 

parameters [-], 𝜌 ,  is the equilibrium concentration of NAPL species in the pure water 

phase [M L-3], 𝛾 is an empirical parameter [-], and 𝐶  is the concentration of surfactant [M 



L-3]. Eq. (S32) was formulated by Pennell et al. (1994). Equilibrium solubility is linearly related 

to surfactant concentration over the CMC, as shown in Eq. (S32). Finally, the multiphase flow 

and solute transport equations can be obtained by substituting the mass exchange rate in Eq. 

(S30) into Eqs. (S18), (S21), and (S28). Because the solute transport equation for the surfactant 

is not related to mass exchange, its governing equation can be expressed as follows:  

 

𝜃 𝜌 𝐾 ,
, ∇ ∙ 𝜃 𝐷 ∙ ∇𝐶 𝐶 0  

Initial conditions 

𝐶 𝐶 ,   in Ω 

Boundary conditions 

𝐶 𝐶 ,   on  Γ  

𝑛 ∙ 𝜃 𝐷 ∙ ∇𝐶 𝑓 ,   on Γ  

𝑛 ∙ 𝑉 𝐶 𝜃 𝐷 ∙ ∇𝐶 𝑓 ,   on Γ                                   (S33) 

 

where 𝐶  is the surfactant concentration [M L-3], 𝐶 ,  is initial concentration of the surfactant 

[M L-3] in domain Ω, and 𝐶 , , 𝑓 , , and 𝑓 ,  are the specified concentration [M L-3] along 

Dirichlet boundary Γ  , specified gradient concentration [M L-2 T-1] normal to Neumann 

boundary Γ , and prescribed flux [M L-2 T-1] normal to Cauchy boundary Γ  of the surfactant, 

respectively. 𝐾 ,   is the distribution coefficient [L3 M-1] between adsorbed and aqueous 

surfactant, and 

 

𝑉 ,
,
                                                   (S34) 

 

 



S.3 Numerical Formulations of Water-NAPL Phase Flow and Multispecies 

Transport 

 

The total pressure equation (S18) can be solved using the standard Galerkin finite element 

method to obtain the total pressure at every node, as follows: 

 

∑ 𝑁∈ ∇ ∙ 𝜅 ∙ ∇𝑃 �̅�𝑔∇𝑧 𝑑𝑅 0,  𝑖 ∈ 1,2,⋯ ,𝑁  

(S35) 

where 𝑒  is the element number, 𝑀   is the total number of elements, 𝑅   is the domain 

occupied by element 𝑒, 𝑁  is the Galerkin weighting function for node 𝑖 of the 𝑒th element, 

𝑖 is the node number, and 𝑁 is the total number of nodes. Eq. (S35) can be expressed in matrix 

form as follows: 

 

𝑀 𝑃 𝐺 𝐵 𝑄 𝐸                                     (S36) 

where  

𝑀 , ∑ ∇𝑁 ∙ 𝜅 ∙ ∇𝑁 𝑑𝑅∈ ,   𝑖, 𝑗 ∈ 1,2,⋯ ,𝑁                   (S37) 

𝐺 ∑ ∇𝑁 ∙ 𝜅 ∙ �̅�g∇z𝑑𝑅∈ ,   𝑖 ∈ 1,2,⋯ ,𝑁                   (S38) 

𝐵 ∑ 𝑁 𝑛 ∙ 𝜅 ∙ ∇𝑃 �̅�g∇z 𝑑𝐵∈ ∑ 𝑁 𝑛 ∙ 𝑉 𝑑𝐵∈ ,  

𝑖 ∈ 1,2,⋯ ,𝑁                                                     (S39) 

𝑄 ∑ 𝑁 𝑑𝑅∈ ,    𝑖 ∈ 1,2,⋯ ,𝑁                     (S40) 

𝐸 ∑ 𝑁 𝑑𝑅∈ ,    𝑖 ∈ 1,2,⋯ ,𝑁                    (S41) 

 

 



where 𝐵   represents the boundary of element 𝑒 , and 𝑛  is the unit vector normal to the 

boundary of element 𝑒. The water saturation equation (S21) can be discretized using the finite 

element method, as follows: 

 

𝐶 𝐴𝐷𝑊 𝐷𝐷 𝑊𝑊 𝑆 𝑓                           (S42) 

where 

𝐶 , 𝑁 𝜙𝑁 𝑑𝑅,   𝑖, 𝑗 ∈ 1,2,⋯ ,𝑁                              (S43) 

𝐴𝐷𝑊 , 𝑊 𝑉 ∙ ∇𝑁 𝑑𝑅 𝑊 ∇𝑧 ∙ ∇𝑁 𝑑𝑅,  

𝑖, 𝑗 ∈ 1,2,⋯ ,𝑁                                                   (S44) 

𝐷𝐷 , 𝜅 𝜅 1 𝜅 ∇𝑁 ∙ ∇𝑁 𝑑𝑅,   𝑖, 𝑗 ∈ 1,2,⋯ ,𝑁           (S45) 

𝑊𝑊 , 𝑁 ∇∙ ⁄ ⁄
𝑁 𝑑𝑅,   𝑖, 𝑗 ∈ 1,2,⋯ ,𝑁           (S46) 

𝑓 𝑁 𝜅 𝑉 ∙ 𝑛𝑑𝐵 𝑁 𝑉 ∙ 𝑛𝑑𝐵 𝑁 𝜅 𝜅 𝜌 �̅� 𝑔∇𝑧 ∙ 𝑛𝑑𝐵,  

𝑖 ∈ 1,2,⋯ ,𝑁                                                     (S47) 

 

The time derivative term in Eq. (S42) can be numerically expressed as follows: 

 

∆
𝑆 𝑤 𝐴𝐷𝑊 𝐷𝐷 𝑊𝑊 𝑆   

∆
𝑆 𝑤 1 𝐴𝐷𝑊 𝐷𝐷 𝑊𝑊 𝑆 𝑓                    (S48) 

 

where the superscripts 𝑛 and 𝑛 1 indicate the old and new time levels, respectively. Eq. 

(S48) can be solved in an explicit form at 𝑤 0, in a Crank-Nicholson central difference form 

at 𝑤 0.5, and in an implicit form at 𝑤 1. Similarly, the equations governing dissolved 



contaminant concentration (S28) and surfactant concentration (S33) can be solved using the 

Galerkin finite element method, as follows: 

 

𝑀 , 𝐷 𝐾 𝐶 𝐵 𝑅 ,     𝑘 𝑜, 𝑠               (S49) 

where 𝑘 indicates the solute species 𝑘 𝑜  or surfactant 𝑘 𝑠 . 

𝑀 , 𝑁 𝜃 𝜌 𝐾 , 𝑁 𝑑𝑅,   𝑖, 𝑗 ∈ 1,2,⋯ ,𝑁 , 𝑘 𝑜, 𝑠          (S50) 

𝐷 , ∇𝑁 ∙ 𝜃 𝐷 ∙ ∇𝑁 𝑑𝑅,   𝑖, 𝑗 ∈ 1,2,⋯ ,𝑁 , 𝑘 𝑜, 𝑠              (S51) 

𝐾 , 𝑁 𝐶 𝑁 𝑑𝑅,   𝑖, 𝑗 ∈ 1,2,⋯ ,𝑁 , 𝑘 o               (S52) 

𝐾 , 𝑁 𝑁 𝑑𝑅,   𝑖, 𝑗 ∈ 1,2,⋯ ,𝑁 ,  𝑘 s                    (S53) 

𝐵 𝑁 𝑛 ∙ 𝜃 𝐷 ∙ ∇𝐶 𝑑𝐵,   𝑖 ∈ 1,2,⋯ ,𝑁 ,  𝑘 o, s             (S54) 

𝑅 𝑁 𝐶 𝜌 𝑑𝑅,   𝑖 ∈ 1,2,⋯ ,𝑁 ,  𝑘 o                    (S55) 

𝑅 0,    𝑖 ∈ 1,2,⋯ ,𝑁 , 𝑘 s                                 (S56) 

 

with 𝐶  and 𝜌  in Eqs. (S52) and (S55) representing parameters related to the dissolution 

process described by Eq. (S30). The numerical procedure is in detail presented in Fig. S1. First 

of all, the numerical simulation conducts to the total pressure 𝑃  using Eq. (S36) at step II, and 

solves the total velocity 𝑉  using Eq. (S17) at step III. After then, using the total pressure and 

total velocity, the water saturation 𝑆  is solved in Eq. (S42) at step IV. Since the water 

saturation equation is a nonlinear, the iterative process is needed to get the conserved solution 

at step V. After getting the conserved solution of the water saturation, NAPL saturation is 

obtained using 𝑆 1 𝑆  and water phase Darcy velocity 𝑉  is calculated in Eq. (S19). The 

concentration of the dissolved contaminant 𝐶  in Eq. (S28) and the concentration of surfactant 

𝐶  in Eq. (S33) care calculated by using Eq. (S49) at step VIII. 
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Figure S1. Flow chart for proposed numerical method. 𝑡  and 𝑡  are new and old time 

levels, respectively, ∆𝑡 is time step, 𝑃  is the total pressure, 𝑆  and 𝑆  are the water phase 

and NAPL phase saturations, respectively, 𝑉  is the total velocity, 𝑉  is the Darcy velocity of 

water, 𝐶  and 𝐶  are the concentrations of dissolved contaminant and surfactant, 

respectively, 𝑉 ,  and 𝑉 ,  are the particle tracking velocities for dissolved contaminant and 

surfactant, respectively, superscripts 𝑛 1  and 𝑛 indicate the new and old time levels, 

respectively, superscript 𝑚 is the nonlinear iteration level, and superscript ∗ indicates the 

results of particle tracking. 


