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Material and Methods
DOM measurements

The measurement of the three-dimensional fluorescence
spectrum was done on the instrument (RF-6000, Japan). Com-
bined with the DOMFluor toolbox in MATLAB, according to the
standard procedure, we carried out PARAFAC analysis on the
EEM data [1]. After removing the Rayleigh scattering, we further
removed the outliers. For the four-component model obtained, it
was verified by the method of split-half analysis and random in-
itialization. Then the four components were uploaded to the
OpenFluor database (https://openfluor.lablicate.com/) for com-
parative analysis [2]. The fluorescence intensity of all compo-
nents was expressed as the Fmax. Proportions of fluorescent
components were determined by dividing each component by to-
tal fluorescence (e.g. C1% = C1/(C1 + C2 +C3 +...+ Cn) * 100, n
represents the number of components selected by the researcher
in the model) [3].

Fluorescence index measurement

FI was defined as the ratio of the fluorescence intensity at
the emission wavelength of 470 nm and 520 nm at an excitation
wavelength of 370 nm [4,5]. /o was determined by the ratio of
the fluorescence intensity at the emission wavelength of 380 nm
to the maximum fluorescence intensity in the range of 420-435
nm under the excitation wavelength of 310 nm [6]. HIX was esti-
mated as the fluorescence peak between 435-480nm divided by
the sum of the fluorescence peak between 300-345nm and the flu-
orescence peak between 435-480nm under the excitation light of
254nm wavelength [7]. BIX was calculated as the ratio of the flu-
orescence intensity at the emission wavelength of 380nm and
430nm at the excitation wavelength of 310nm [8].

Model optimization

The machine learning algorithm is driven by parameters, so
the GridSearchCV function from Scikit-Learn library was used to
get the optimal value of each parameter [9]. The parameters and
their values contained in the grid are shown in Table S2. In order
to get better prediction results, cross-validation was used to re-
duce the error. 5-fold cross-validation (CV) was used to establish
and validate the prediction results. The entire training data set
was randomly divided into 5 subsets, 4 subsets were used for
model training and to make predictions for the subsets not in-
volved in training. The whole process was repeated 5 times until
each subset was tested [10].

Performance indices

Three indicators are used to evaluate and compare the per-
formance capabilities of the models. These are R-Square (R?), root
mean square error (RMSE) and residual prediction deviation
(RPD), defined as follows:
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Where Yacrua is the detected CODMn data, Ypredicris the pre-
dicted data by the models, m is the number of data and Ymenis
the mean of detected CODMn data.

COD and CODMn response of DOM's Fmax reduction

Fmax of each component of the DOM would be sequentially
reduced (Fmax was reduced in steps of 10% until it became 0).
For example, the COD reduction concentration at the 20% reduc-
tion level of C1 is calculated as the value calculated by substitut-
ing the Fmax of the original unchanged DOM into the model mi-
nus the Fmax of 20% C1 and other unchanged Fmax of C2, C3
and C4 into the model, the degree of COD reduction at the 20%
reduction level of C1 is calculated as the reduction concentration
divided by the value calculated by substituting the original DOM
into the model. The calculation of CODMn reduction is consistent
with COD.
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Figure S1. The sketch map of 5-fold cross validation.
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Figure S2. PARAFAC model output showing fluorescence signatures of the four DOM com-
ponents.
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Figure S3. Spatial distribution of COD, CODMn and DOM in Summer. (a): C1; (b): C2; (c): C3;
(d): C4; (e): COD; (f): CODMn.
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Figure S4. Sum of Fmax for C1-C4.
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Table S1. Spectral parameter description.

In- Method Description Refer-
dex ences
_ The source of humus, >1.8 means DOM mainly comes from
AEx=370nm, . . . o
FI F470/520nm microbial metabolism and other processes, < 1.4 indicates  [4, 5]
DOM is mainly land-based input
B/ AEx=280nm, The proportion of newborn DOM in the overall DOM [6]
F380/Fmax420~435nm
AEx=254nm, The degree of humification of organic matter, >4 means high
HIX Fmax435~480nm/ ( humification degree of DOM, < 4 represents low humifica-  [7]
Fmax300~345+Fmax435~480nm) tion degree
The ratio of microbial-derived organic matter and exoge-
BIX AEx=310nm, nous organic matter, > 0.8 symbolizes obvious autogenous 8]
F380/430nm characteristics, < 0.8 indicates that the characteristics of au-

thigenic source are not obvious

Table S2. Values of the parameters contained in the grid search.

Parameters Values
Bootstrap True, False
Number of the trees 2,3,4,5,6,8,10,15,20,30,50,100
Depth of the trees 3,5,7,9,10,15,20,50
Alpha 0.1,0.5,1,5

Table S3. Characteristics of four PARAFAC components.

Compo- Excaitation and emission max-

. Description
nent ima
C1 Ex=278; Em=318 Protein-like, Biological production, Freshly production[11-13]
C2 Ex=296; Em=376 Humic-like, Dominates the estuarine DOM signal[14]
C3 Ex=332; Em=406 Humic-like, Prouced in the wat.er'or the coastal zooe, Related to water sa-
linity[15-17]
C4 Ex=270(362); Em=462 Humic-like, Resembled plant-derived material[16, 18]
Table S4. One-way ANOVA of variables.
Parameter C1 C2 C4 COD CODMn FI HIX
F 0.0157 0.0089 0.0234 0.0140 0.0309 0.6443 0.1365 0.3691
P-value 0.9015 0.9258 0.8797 0.9067 0.8606 0.4226 0.7119 0.5438
Using a cutoff value of p <0.05.
Table S5. Seasonal Changes of COD, CODMn and DOM.
D
Location Time Cl(au) C2(au) C3(au) C4(au) COD (mg/L) C(zg/l;j[)n FI HIX
2019 Winter 224.65 23840  266.07 249.48 8.38 2.77 1.74 4.79
Rivers 2020 Spring 24179 31492  351.86  328.03 14.17 4.12 1.73 4.94
2020 Summer 200.73  355.75  448.28  471.09 9.21 4.06 1.67 6.62
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2020 Autumn  169.41 206.34  237.88 239.61 6.84 1.96 1.68 4.31
2020 Winter  148.45 192.99  225.93 235.49 7.79 2.06 1.72 4.92
2019 Winter  338.61 216.36 141.94 136.42 15.55 4.13 1.63 1.97
2020 Spring  352.91 215.92 161.20 140.56 16.56 4.10 1.72 1.88
Erhai Lake 2020 Summer 425.26 217.70 180.75 152.19 17.52 4.24 1.73 1.79
2020 Autumn 398.83 261.92 216.39 184.93 16.23 3.90 1.70 1.94
2020 Winter  409.20 301.67  230.51 210.79 15.37 3.64 1.69 2.20
Table S6. Correlation coefficient of COD, CODMn and DOM in rivers.
C1 C2 C3 C4 COD CODMn FI HIX
C1 1 0.745** 0.661** 0.604** 0.746** 0.689** 0.166* -0.375**
C2 1 0.978** 0.942** 0.730** 0.839** 0.015 0.041
C3 1 0.978** 0.691** 0.834** 0.005 0.145*
C4 1 0.651** 0.849** -0.102 0.235**
COD 1 0.842%* 0.058 -0.112
CODMn 1 -0.113 0.094
FI 1 -0.164*
HIX 1
*: P <.05; **: P <.01; and ***: P <.001 (n = 216).
Table S7. Correlation coefficient of COD, CODMn and DOM in lake.
C1 C2 C3 C4 COD CODMn FI HIX
C1 1 0.161** 0.352** 0.249** 0.2471** 0.128** 0.175** -0.238**
C2 1 0.809** 0.916** -0.293** -0.572** 0.031 -0.191**
C3 1 0.941** -0.142%* -0.387** 0.299** -0.512**
C4 1 -0.224** -0.515** 0.129** -0.302**
COD 1 0.220** 0.139** -0.100*
CODMn 1 0.044 -0.051
FI 1 -0.570**
HIX 1
*: P <.05; **: P <.01; and ***: P <.001 (n = 456).
Table S8. COD response of DOM's Fmax reduction.
] : Concentration of COD reduction Degree of COD reduction
DOM reduction ratio C1 C2 C3 Ca C1 C2 C3 Ca
10% 0.28 0.40 0.15 0.11 3% 4% 2% 1%
20% 0.57 0.73 0.22 0.23 6% 8% 3% 3%
30% 0.93 1.00 0.28 0.39 10% 11% 3% 4%
40% 1.30 1.26 0.31 0.60 15% 14% 3% 7%
50% 1.73 1.56 0.37 0.69 19% 17% 4% 8%
60% 2.19 1.80 0.40 0.80 24% 20% 4% 9%
70% 2.55 2.09 0.43 0.89 28% 23% 5% 10%
80% 2.65 2.28 0.50 1.01 30% 25% 6% 11%
90% 2.61 2.34 0.53 1.16 29% 26% 6% 13%
100% 2.60 2.34 0.53 1.29 29% 26% 6% 14%

Table S9. CODMn response of DOM's Fmax reduction.

Concentration of CODMn reduction

Degree of CODMn reduction

DOM reduction ratio

C1 C2 C3 C4 C1 C2 C3 C4
10% 0.06 0.07 0.03 0.08 2% 2% 1% 3%
20% 0.09 0.10 0.05 0.13 3% 3% 2% 5%



30%
40%
50%
60%
70%
80%
90%
100%

0.12 0.11 0.07 0.18 4% 4% 2%
0.14 0.12 0.07 0.25 5% 4% 2%
0.14 0.15 0.12 0.35 5% 5% 4%
0.14 0.16 0.15 0.41 5% 5% 5%
0.14 0.18 0.16 0.48 5% 6% 6%
0.13 0.18 0.18 0.49 4% 6% 6%
0.12 0.18 0.18 0.47 4% 6% 6%
0.12 0.18 0.18 0.47 4% 6% 6%
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