
Supplementary Methods 
Adapted and modified SEIR model 
COVID-19 spread dynamics are described through adaptations of a SEIR compartmental model(1, 2). In 
this broadly used framework, the whole population is divided into homogeneous (mean-field 
approximation) groups, usually called compartments. Individuals transit between compartments, but can 
only be in one compartment at a given time point. In SEIR models, the whole population N is divided into: 
i) a susceptible population (S), ii) exposed individuals (E), which have been infected but are not yet 
infectious (considering a latency period), iii) infected people (I), and iv) recovered or removed people (R), 
which correspond to people that have either recovered or perish from the disease.  

In our work, the whole population is split into two main SEIR-type branches in which the first describes a 
potentially more severe progression and the other branch describes a milder progression of the disease. We 
consider S as a compartment that accommodates pure susceptible individuals; these are individuals 
susceptible to both branches. Depending on the vaccination rate, the susceptible population progressively 
becomes vaccinated and in general follows the milder progression path. These individuals can be also 
infected yet, with milder symptoms, and can also spread the disease. Assuming a certain vaccine inefficacy 
to severe illness, some of these individuals may follow the more severe branch.  

 

Figure S1 Schematic overview of the proposed model (SEAIR-severe/mild). 

In more detail, we assume that the infected population is composed of those individuals that have been 
confirmed as COVID-19 patients (I) and those that are asymptomatic (A) and remain undetected from the 
system. Furthermore, we distinguish between the recovered individuals (R) and those that perish from the 
disease (P). In addition, we assume that confirmed patients can either recover at home (mild incidents) or 
be hospitalized (severe incidents). Furthermore, we take into account the vaccinated individuals including 
other two additional compartments; the vaccinated (V) and the immune (F). Specifically, we assume that 
the vaccinated individuals are those who have completed the initial vaccination protocol (a second dose of 
a two-dose vaccine like the Pfizer/BioNTech and Moderna vaccine, or a first dose of a one-dose vaccine 
like the Johnson & Johnson vaccine). Vaccinated people are considered immune after a period of time, 
where the human body reaches a threshold of protection. In other words, the immune population is the 
vaccinated population after a certain period of time. Note that before that time the vaccinated population, V, 



is considered susceptible. The booster shot (a third dose of Pfizer/BioNTech vaccine, or a second dose of 
Johnson & Johnson vaccine) is also accommodated in the model. In that case, susceptible individuals are 
directly transferred to the immune population with a rate equal to the vaccination rate of the third dose. The 
vaccinated (and recovered) individuals are susceptible to infection, yet progress to the mild path instead, as 
exposed (Ev) and asymptomatic (Av). The vaccinated confirmed cases (Iv) are not considered in the current 
version due to lack of related data. Furthermore, recovered and vaccinated individuals can become 
susceptible to severe illness again due to loss of immunity(3-5). A schematic illustration of the proposed 
model is shown in Figure S1. 

In terms of the mathematical basis, the model is described by a system of coupled, non-linear ordinary 
differential equations. The variables of the system correspond to the population sizes and change over time. 
The transition rates describe the rate at which individuals in one compartment transit to another. Some of 
these rates are assumed constant and some are allowed to change over time describing for example the 
disease control policies that are applied at a given time period. The time-varying parameters include 
the 𝑎௔ and 𝑎𝑖, which reflect respectively the probability of the asymptomatic/unconfirmed (A) and the 
confirmed infected (I) to infect the susceptible population; parameters that are highly affected by social 
distancing measures, shelter-in-place strategies, and the strain variant. The transition rate 𝜅 from 
asymptomatic/unconfirmed to (confirmed) infected population is assumed constant and reflects the 
frequency of testing. The asymptomatic population recovers with rate 𝜌. The infected population can either 
recover directly with rate 𝛽 = 𝜌 or be hospitalized with rate ℎ𝑖𝑛. The hospitalized population either 
recovers with rate ℎ𝑜𝑢𝑡 or succumbs from the virus with mortality rate 𝜇. The parameters ℎ𝑖𝑛,ℎ𝑜𝑢𝑡and 𝜇 are 
considered time-varying parameters to enable them to express the potential role of vaccinations and virus 
evolution on hospitalizations and mortality. The susceptible population becomes vaccinated (V) at rate 𝑣𝑖𝑛and is rendered immune (F) at rate 𝑣𝑜𝑢𝑡. The vaccination rate 𝑣௜௡ is also a time-varying parameter. The 
recovered population can become susceptible again (loss of immunity) with a constant rate γ. We also 
consider the case where the immune population (F and R) can become infected (Ev) from either 
asymptomatic (A), confirmed patients (I) or other infectious immune people (Av) with vaccine 
effectiveness against infection reduced by a factor 𝑣𝑒, respectively for each transmission rate. The infected 
immune population recovers with rate 𝜌 and can also spread the disease contaminating the susceptible 
population (S) with effectiveness against transmission reduced by a factor 𝑣𝑒 relative to the unvaccinated 
population. Based mainly on the vaccine effectiveness (σ) against serious illness, the infected immune 
people may transit to the more severe path. Waning immunity over time has been also observed in 
vaccinated individuals. Thus, vaccinated people become susceptible again with rate γ. Part of the infected 
vaccinated individuals may also become detected incidents (Iv), although we do not directly account for 
this scenario due to current lack of related data. All the parameters and variables of the proposed models 
are depicted in Table S1 and Table S2, respectively. 

The dynamics of the proposed SEAIR-severe/mild model are given as follows: 𝑑𝑆(𝑡)𝑑𝑡 = −𝛼௔(𝑡)൫𝑆(𝑡) + 𝑉(𝑡)൯𝐴(𝑡) − 𝛼௜(𝑡)൫𝑆(𝑡) + 𝑉(𝑡)൯𝐼(𝑡) − 𝑣௘ 𝛼௔(𝑡)൫𝑆(𝑡) + 𝑉(𝑡)൯𝐴௩(𝑡) + 𝛾𝑅(𝑡) + 𝛾௩𝐹(𝑡) − 𝑣௜௡(𝑡)𝑆(𝑡) 𝑑𝐸(𝑡)𝑑𝑡 = 𝛼௔(𝑡)൫𝑆(𝑡) + 𝑉(𝑡)൯𝐴(𝑡) + 𝛼௜(𝑡)൫𝑆(𝑡) + 𝑉(𝑡)൯𝐼(𝑡) + 𝑣௘ 𝛼௔(𝑡)൫𝑆(𝑡) + 𝑉(𝑡)൯𝐴௩(𝑡) − 𝑡௟௔௧௘௡௧ିଵ  𝐸(𝑡) 𝑑𝐴(𝑡)𝑑𝑡 = 𝑡௟௔௧௘௡௧ିଵ  𝐸(𝑡) − 𝜅(𝑡)𝐴(𝑡) − 𝜌 𝐴(𝑡) 𝑑𝐼(𝑡)𝑑𝑡 = 𝜅(𝑡)𝐴(𝑡) − 𝛽 𝐼(𝑡) − ℎ௜௡(𝑡) 𝐼(𝑡) + (𝜎 − 1)𝑡௟௔௧௘௡௧ିଵ  𝐸௩(𝑡) 𝑑𝑅(𝑡)𝑑𝑡 = 𝛽 𝐼(𝑡) − 𝛾𝑅(𝑡) + ℎ௢௨௧(𝑡)𝐻(𝑡) + 𝜌 𝐴(𝑡) 𝑑𝑃(𝑡)𝑑𝑡 = 𝜇(𝑡)𝐻(𝑡) 



𝑑𝑉(𝑡)𝑑𝑡 = 𝑣௜௡(𝑡) 𝑆(𝑡) − 𝑣௢௨௧ 𝑉(𝑡) 𝑑𝐹(𝑡)𝑑𝑡 = 𝑣௢௨௧ 𝑉(𝑡) − 𝑣௘ 𝛼௔(𝑡)𝐹(𝑡)𝐴(𝑡) − 𝑣௘ଶ 𝛼௔(𝑡)𝐹(𝑡)𝐴௩(𝑡) − 𝑣௘𝛼௜(𝑡)𝐹(𝑡)𝐼(𝑡) + 𝜌௩𝐴௩(𝑡) − 𝛾௩𝐹(𝑡) 𝑑𝐻(𝑡)𝑑𝑡 = ℎ௜௡(𝑡)𝐼(𝑡) − ℎ௢௨௧(𝑡)𝐻(𝑡) − 𝜇(𝑡)𝐻(𝑡) 𝑑𝐸௩(𝑡)𝑑𝑡 = 𝑣௘ 𝛼௔(𝑡)𝐹(𝑡)𝐴(𝑡) + 𝑣௘ଶ 𝛼௔(𝑡)𝐹(𝑡)𝐴௩(𝑡) + 𝑣௘𝛼௜(𝑡)𝐹(𝑡)𝐼(𝑡) − 𝑡௟௔௧௘௡௧ିଵ 𝐸௩(𝑡) 𝑑𝐴௩(𝑡)𝑑𝑡 = 𝜎 𝑡௟௔௧௘௡௧ିଵ 𝐸௩(𝑡) − 𝜌௙ 𝐴௩(𝑡) 

 

Table S1 Model parameters 

Name Range Description 𝑎௔(𝑡) [0.001, 0.9] [days-1] probability of infection by asymptomatic/unconfirmed incidents [estimated time-
varying parameter] 𝑎௜(𝑡) [0.01, 0.3] [days-1] probability of infection by confirmed incidents [estimated time-varying parameter] 𝜅 1/2 [days-1] transition rate from asymptomatic to confirmed incidents: testing rate 
[bibliographically given constant parameter] 𝜌 1/6 [months-1]  recovery rate of asymptomatic and vaccinated individuals [bibliographically given 
constant parameter] 𝛽 1/6 [months-1] recovery rate of confirmed incidents [bibliographically given constant parameter] ℎ௜௡(𝑡) [0.001, 0.5] [days-1] admission rate to hospital [estimated time-varying parameter] ℎ௢௨௧(𝑡) [0.001, 0.3] [days-1] discharge rate from hospital [estimated time-varying parameter] 𝜇(𝑡) [0.0001, 0.05] [days-1] mortality rate of hospitalized [estimated time-varying parameter] 𝑣௜௡(𝑡) [0.0001, 0.02] [days-1] vaccination rate of susceptible population [estimated time-varying parameter] 𝑣௢௨௧ 1/14 [days-1] latency rate for full immunity of vaccinated population [bibliographically given 
constant parameter] 𝛾 1/6  [months-1] immunity loss rate [bibliographically given constant parameter] 𝑣௘ [0, 1] vaccine effectiveness against infection factor [unknown parameter] 𝜎 [0, 1] vaccine effectiveness against serious illness [unknown parameter] 

tlatent 2 days latent period of the virus after exposure [bibliographically given constant 
parameter] 

 

Table S2 Model compartments 

Compartment Description 

S Susceptible population to both mild and severe branches 

E Exposed to the virus, but not yet infectious population 



A Asymptomatic and infectious population 

I Confirmed infected population 

R Recovered population (originating from A, I, or H) 

P Population succumbed to the disease 

V Vaccinated but not yet fully immune population 

F Vaccinated and fully immune population 

H Hospitalized population 

Ev Immune population exposed to the virus 

Av Immune population, which is asymptomatic and infectious 

 
The model variables and parameters are optimized to fit the data for a given time-period. This is commonly 
known as a fitting or optimization process. After the optimization process, the transition rates (parameters) 
are kept fixed and allow the model to make future predictions, by evolving the population of the 
compartments (variables) under the assumption that these parameters do not change during the time 
window of the predictions. This is called the prediction or projection process.  

Fitting is important: i) for assessing whether the model is capable to describe the data observed, ii) for 
allowing understanding of the underlying mechanisms involved (i.e. impact of regulation measures, 
seasonal and behavioral changes, emergence of new strain variants), and iii) to realize predictions based on 
the history of the disease evolution to inform policy making.  

Data  
The model is demonstrated for Greece. The modeling parameters and outputs are constrained and 
optimized by the publicly available daily data provided by NOPY(6). The data include: i) the daily infected 
people, ii) the daily admitted to iii) and discharged from the hospital, iv) the daily number of deaths, as well 
as v) the daily number of vaccinations. The total population, N, of Greece is taken from the demographic 
data of 2019 and is assumed constant throughout the simulations. 

Data pre-processing 

Due to the fact that the model inputs are noisy measurements (i.e. drops in counts are commonly observed 
during the weekend as less tests and vaccinations are performed), we smooth the data before the 
optimization. We performed various averaging methods including the widely used moving average where 
the unweighted mean of the previous m data-points is performed and the earth moving average, which is 
inspired by the earth mover’s distance(7) viewing the sequence to be smoothed as a mass distribution, and 
allowing amounts of mass to move to neighboring places in the sequence. In contrast to the earth mover’s 
distance, moving mass within a certain (predefined) range 𝑟 is not penalized, while moving outside this 
predefined range is not allowed. Specifically, given a sequence x of n values 𝑥𝑖, 𝑖 = 0, . . . , 𝑛 − 1, the 
smoothed sequence 𝑥 is the result of an optimization procedure. The objective function of this procedure is 
the Mean Square Error (MSE): ∑௡ିଵ௜ୀ଴ (𝑥௜ − 𝑥௜)ଶ + 𝜆(∑௡ି௥௜ୀ଴ (𝑆(𝑥)௜ − 𝑆(𝑥)௜)ଶ), where 𝑆(𝑥)௜ denotes 
the sum of 𝑟 values of the sequence: 𝑆(𝑥)௜=∑𝑖+𝑟−1𝑗=𝑖 𝑥𝑗 and 𝜆 is a balancing factor experimentally 
determined (𝜆 = 200).  In practice, this objective function permits free movement of values within the 
range 𝑟 (second term of the objective) while keeping the smoothed values 𝑥𝑖 close to the input ones (first 
term). The differences between the smoothing methods are more apparent when the fluctuations on the data 
are steeper.  



Variable and parameter estimation  
We assume an initial state, which describes the starting point of our simulations. Hospitalized, dead, 
infected and vaccinated compartments are initialized based on the current related epidemiological data. The 
numbers of exposed, asymptomatic and infected subjects are initialized arbitrarily to be equal to 100/N, 
1000/N and 1000/N, respectively. While the recovered compartment is initialized with the cumulative 
incidents up to the first day of the fit minus the population of compartment I. The number of dead people is 
initialized with the number of the cumulative deaths up to the first day of the fitting. The hospitalized 
compartment is initialized as the ℎ௜௡(0) multiplied by the initial value of compartment I. Considering that 
we begin the fitting process at a time when numbers of vaccinated people were negligible, we assume that 
the fully immune people from vaccinations are initially considered equal to 0. Instead, we take them into 
account by setting the initial number of vaccinated but not fully immune (compartment V) as the total 
vaccinated people at the first day of the fit. The exposed vaccinated and the asymptomatic vaccinated 
compartments are initially assumed to be empty. The initial population of the susceptible compartment S is 
the total population minus all the other compartments.  

Both the fixed and the parameters to be fitted are depicted on Table S1. The time-varying parameters are 
constrained to be piecewise constants over certain intervals as in Tsay et. al.(2) to avoid overfitting. Bounds 
on their values are given to the parameters as shown in Table I. The set of all the parameters that are not 
given a priori and the variables that describe the system are optimized based on the available data. The 
commonly used least-squares regression method is used with the objective to minimize the MSE between 
simulations and measured values, thus best fit the data set. A weighted loss function is used to penalize 
differently the error terms.  

Model scenarios  

In the baseline scenario, we assume that 𝜎, 𝑣௘ and 𝛾 are equal to 0.9, 0.25, and 0, respectively. The baseline 
scenario thus assumes a relatively highly effective vaccine with 90% protection against serious illness, low 
probability of infection or transmission upon vaccination (or infection), and an indefinite immunity period 
against severe illness after vaccination (or infection). Thus, for the baseline scenario the booster shots are 
not considered. 

Focusing on critical time-intervention points, we then explore several predictive scenarios including the 
impact of i) various vaccination rates, ii) the vaccine effectiveness 𝑣𝑒 describing the protection of 
vaccinated individuals against infection and spread, and iii) the loss of immunity as reflected in the 
parameter 𝛾on daily incidents, hospitalizations and deaths.  

The COVID-19 vaccination program in Greece followed similar prioritization protocols(8) with other 
countries in Europe. Taking into account the limited supply of vaccines, an initial prioritization was given 
to health care workers and medically vulnerable individuals. Age-structured prioritization with higher 
priority to senior citizens then followed.  We fitted the model to the existing vaccination rate in Greece 
based on the publicly available data assuming, however, well-age-mixing in the population. It is important 
to note that the rate at which individuals get vaccinated reflects the people's response to the vaccine 
campaign and comprises an unstable factor that may significantly deviate from the original vaccination 
plan. For that reason, at critical-intervention-time points, we varied accordingly the vaccination rate of the 
population to explore its impact on the spreading dynamics and disease progression informing policy 
making. 

Additionally, we give particular emphasis on vaccine effectiveness to infection, onward transmission, and 
protection against severe illness with the aim to underline their role in disease progression. Considering that 
the current available data for Greece did not provide information of whether the reported incidents, 
hospitalizations and deaths result from vaccinated or unvaccinated individuals, reported or hypothetical 
values of the corresponding variables and parameters can be only considered. The role of vaccine 
efficacy/effectiveness against severe illness has been more extensively studied in laboratory/real 
conditions(9, 10). On the other hand, the vaccine effectiveness against infection and onward transmission is 



highly more difficult to determine and it still remains a vague parameter(11-14). Of note, vaccine efficacy 
and effectiveness may considerably be affected by the virus evolution. In general, we assume that 
vaccinated people can be infected and transmit the virus similarly to asymptomatic people. Specifically, we 
assume that the vaccine effectiveness against infection and transmission is reflected on the reduced factor 𝑣𝑒 ∈ ሾ0,1ሿ relative to the asymptomatic unvaccinated population. In general, 𝑣𝑒 can be different for 
infection relative to transmission, but for simplicity we assume the same value for both cases. 𝑣𝑒 closer to 
zero reflects lower probability of a vaccinated person to be infected and transmit the virus, whereas 𝑣𝑒 
closer to one actually assumes no difference between vaccinated and unvaccinated asymptomatic people.  
The vaccine effectiveness against infection and transmission might also vary over time particularly when 
different regulation measures are applied among vaccinated and unvaccinated people in the community and 
may change in the presence of new strains. We vary 𝑣𝑒 to lower and higher values and explore its impact 
on daily incidents, hospitalizations and deaths. The vaccine effectiveness against severe illness (𝜎) may 
also be compromised in the emergence of a novel, highly aggressive variant of the virus. 

At last, a long debate has emerged regarding the waning immunity after vaccination or infection. Recent 
studies have shown that immunity is significantly compromised after 6 to 8 months from infection or 
vaccination(3-5). Furthermore, new studies(5) have also shown that older individuals given a third booster 
dose of vaccine were less likely to develop severe illness than those who had not received the boosters. 
Therefore, the immunity loss rate 𝛾, is also explored in this study as it may considerably revive the 
susceptible population with drastic consequences in virus spread. In the final formulation of the model, we 
assume that immunity is lost in 6 months, whereas the booster shots are also considered.  
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