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1 Model: general characteristics

1.1 Introduction

We introduce a new model to describe the spreading of influenza in a long-term care nursing home by
extending the one introduced in [1] in several aspects and we study its fitting capabilities by using data
of a North-Italy structure during the influenza season 2019/2020. Our model is structured with a classical
seir (susceptible, exposed, infected and removed) deterministic model describing the influenza spreading in
the population and a stochastic agent based model that formalizes the evolution of the disease inside the
nursing home. The population model is time continuous, whereas for the stochastic model referred to the
nursing home we adopt a discrete-time approach, by setting the time step to 8 hours consistently with the
three shifts in the structure: morning shift M (6am-2pm), afternoon shift A (2pm-10pm) and night shift N
(10pm-6am).

1.2 Population model

We consider a classical time-continuous seir model, where s is the proportion of susceptible, e the proportion
of exposed, i the proportion of infected and r the proportion of removed, so s+ e+ i+ r = 1. Following [7],
we divided the population in to three different age classes:

1 = children 2 = adult 3 = elderly

[0, 14] [15, 64] [65, ω]

for each of which there are the same state variables: sk, ek, ik, rk, k = 1, 2, 3.

Given the short time window considered, we assume no demography (births, deaths and immigration) and
no transitions from one age group to another, so population and its age structure are constant over time.

The population dynamic is formalized by the following ordinary differential equations system:

s′j(t) = −λj (t) s (t)

e′j(t) = λj (t) sj (t)− σej (t)

i′j(t) = σej (t)− γij (t)

r′j(t) = γij (t)

with initial data sj(0), ej(0), ij(0), rj(0) and j = 1, 2, 3.

The infectivity rate σ and the recovery rate γ are assumed the same in all the age classes. The transmission
rates βkj depend on age, hence the forces of infection are

λk (t) =
∑
j

λkj (t) (1)

where λkj (t) = βkjij(t).

In order to estimate the previous parameters and initial conditions, we use an iterative search based on a least
squares principle. We randomly select N = 2×106 different parameter configurations in a sufficiently ”large”
space. For each configuration of parameters, we compute the corresponding simulated weekly incidences
and the differences with the real ones. We sum all the square of those differences only for all ”central” weeks
(from 12th to 28th) and all age classes, obtaining a global least square error. We determine a new (possibly
reduced) parameter space based on the best 100 estimations and iterate previous process. We adopt as stop
rule a negative variation of the best square error less of 1/100. Figure S1 shows the fitting curves for the
three age classes, while Tables S1 and S2 collect the estimated parameters and initial conditions we used in
our model.
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Figure S1: Real (dots) and simulated (line) weekly incidences.

Table S1: Parameters estimates for the population model (shift−1).

parameters [0, 14] [15, 65] [65, ω]

βjk β11 =0.3007 β12 =0.4912 β13 =0.4782
β21 =0.3419 β22 =0.1166 β23 =0.6053
β31 =0.4503 β32 =0.9396 β33 =0.8956

σ 0.1547 0.1547 0.1547

γ 0.0582 0.0582 0.0582

Table S2: Initial conditions of the population model.

Initial conditions [0, 14] [15, 65] [65, ω]

sj(0) s1(0) =0.068929154 s2(0) =0.158005673 s3(0) =0.016085227

ej(0) e1(0) =0.00000512 e2(0) =0.00000032 e3(0) =0.000041

ij(0) i1(0) =0.00000512 i2(0) =0.00000128 i3(0) =0.0000205

rj(0) r1(0) =0.061060606 r2(0) =0.480992727 r3(0) =0.214853333
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1.3 Population data

The population of Biella, the province where the LTC facility is located, at the beginning of season is derived
from the national statistic institute [6] and summarized in Table S3.

Table S3: Population of the Biella province.

age class [0, 14] [15, 65] [65, ω] total

number of individuals 18,926 105,981 50,678 175,585

We consider the influenza season from 42th week of 2019 to the 17th week of 2020 (196 days) because this
is the period during which the ministerial surveillance program (INFLUNET) is active and a weekly report
about the influenza epidemic is provided by the health authorities [5]. Due to the pandemic situation of the
beginning of 2020, the nursing home was closed to visitors after 133 days from the beginning of influenza
season (2020/02/24). No others restrictions (like masks, distancing and so on) are considered in the model
since they were not really effective in the first months of the pandemic (moreover, there was a scarcity of
such measures at the beginning of the pandemic). From INFLUNET reports, the first cases of influenza
were registered in the 44th week of 2019 (28/10-3/11); in Piedmont the weekly incidence through the season
ranged from < 2.96 to 13.88 per 1.000 individuals. The epidemic peak in Italy was registered during the 5th
week of 2020 (27/01-2/02) with a maximum incidence of 13.2 cases per 1.000 individuals; in Piedmont the
peak was reached in the 7th week of 2020 (10/2-16/02) with a incidence 11.50 per 1.000 individuals. The
estimated total number of the infected in Italy during the 2019/2020 season is 7,595,000 with an attack rate
of around 20% [12].

We suppose that a percentage of the population is vaccinated once at the beginning of the season (time 0).
For each different age class j, j = 1, 2, 3, we consider the vaccine uptake uj and the vaccine efficacy vej .
Their values, reported in Table S4, were obtained respectively from the Italian ministry of Health [4] and a
recent systematic review of test-negative design studies about influenza vaccine efficacy [9].

Table S4: Vaccine uptake and efficacy for age classes.

age class [0, 14] [15, 65] [65, ω]

vaccine uptake u1 = 0.0112 u2 = 0.0516 u3 = 0.51

vaccine efficacy ve1 = 0.4544 ve2 = 0.3744 ve3 = 0.2
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2 Modeling the influenza spread in the nursing home

The considered nursing home is the “Istituto Belletti Bona”. The nursing home is located in the centre of
Biella (Piedmont, Italy) and belongs to “Cooperativa Sociale Gruppo Anteo”. This Long-Term Care service
is authorized for 120 beds and subdivided into 4 wards. In this work the four wards are labelled as w1, w2,
w3 and w4, while in the real situation those wards are called with the name of some flowers that begins with
the first letters of the alphabet: Anemone (A - w1), Bucaneve (B - w2), Camelia (C - w3) and Dalia (D -
w4). Wards w1 and w2 have 20 beds, while w3 and w4 have 40 beds. Each room has two beds: changes of
rooms rarely happen, so we ignored them in our model.

Guests are allocated to one of the wards on the basis of their activity of daily living (ADL) score measured
using the Barthel Score Index [8], [3] and the presence or absence of cognitive impairment. Ward w1 is
dedicated to elderly people with lower levels of dependence in the ADL and with no or mild cognitive
impairment. Ward w2 is dedicated to people with diagnosis of Neurocognitive Disorders with behavioral
disorder (such as Alzheimer disease with or without wandering) independently of their level of dependence
in the ADL. Guests in ward w2 usually have a SPSMQ (Short Portable Mental Status Questionnaire) [10]
score that defines a severe cognitive impairment. Wards w3 and w4 are dedicated to guests with the highest
load of care due to the presence of disability consequent to the typical comorbidities of elderly people (such
as cardiovascular disease, diabetes mellitus, chronic obstructive disease, stroke, sarcopenia, cancer. . . ).

Each room has two beds and a bathroom; in wards w1 and w2 the bathroom is shared with the guest of the
same room, while in wards w3 and w4 the bathroom is shared between 2 rooms. Each ward has an alarmed
entry/exit door that could be opened typing a code number. Each ward has common rooms such as a dining
room, a television room and a lounge area that is used for recreational activities in presence of a socio-
cultural animator. Physical activity and exercise are usually performed in the presence of a physiotherapist
in the ward. Each ward has an assisted bathroom.

A typical day for guests and workers in the nursing home starts at 6.00 AM. In the nursing room of
each ward, the morning-shift workers begin their activities with a meet between night-shift workers. Then
healthcare workers start their assistance activity (such as hygiene); usually guests are then accompanied
to the dining room for the breakfast at 8.00 AM. After breakfast, guests are accompanied by healthcare
workers in the common rooms. During the morning at least two guests/day receive a bath in the assisted
bathroom healthcare workers. At 10.30 AM usually guests receive hydratation. The lunch is scheduled at
12.00 PM in the dining room. The afternoon shift starts at 2.00 PM. As in the morning in each nursing
room of each ward the first activity is the reading and discussion of the clinical records in the presence of
the nurse, the psychologist and the physiotherapist. Some guests are placed in bed for the rest. At 4.30
PM guests receive hydratation and a meal in the common room of the ward. Lunch time is at 6.00 PM and
guests eat in the dining rooms, at 8.00 PM guests are placed in bed. The night-shift starts at 10 PM with
the meet between afternoon-shift workers in the nursing room. The night shift is dedicated to the tidying up
of the common areas, cleaning of wheelchairs, and night assistance to guests, with change of absorbent aids
and possible hygiene. Absorbent aids are changed at least 4 times/day and when necessary. Pharmacologic
therapies are administered by nurses 4 times/day: during the breakfast, during the lunchtime, during the
dinner and before guests go to sleep.

2.1 Workers

Workers are divided in the following three categories:

HCW= healthcare worker

NUR= nurse

OTH= others

The last category is made up of different professional figures: two physiotherapists (PHY), a psychologist
(PSY) and a socio-cultural animator (ANI). We decided to omit administration staff, cleaners, laundry
workers, maintainers or hairdressers having just sporadic contact with guests and workers of the categories
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considered. All the workers belong to the adult age class.

Table S5 collects some information about the number and requested presence for each shift, in each ward, for
all the different types of workers. Notice that presence differs depending on the considered shift (morning
M, afternoon A or night N). The time each worker spends into each ward is equally distributed except
for nurses that work more hours in the morning shift. Healthcare workers and nurses are present every
day, physiotherapists and the socio-cultural animator work from Monday to Friday, the psychologist is not
present on Thursday, Saturday and Sunday.

Table S5: Number and attendance per shift of workers. Numbers between 0 and 1 denote a partial
presence in a given ward during a given shift (nurses in wards w1 and w2 work for 5 hours in the morning
shift and 3 hours in the afternoon shift).

Workers total number shift M shift A shift N

HCW 42 10 8 4

w1 1 1 1
w2 2 2 1
w3 4 3 1
w4 3 2 1

Nurses 8 3 3 0

w1 0.625 0.375 0
w2 0.625 0.375 0
w3 1 1 0
w4 1 1 0

Physiotherapists 2 1 1 0
Psychologist 1 0.5 0.5 0
Animator 1 0.5 0.5 0

2.1.1 Health care workers (HCW)

Each HCWworks around 160 hours per month. There are just a few general rules concerning the assignments
of shifts. No more than six consecutive working days and less than 10 night shift per month are possible.
We obtained some information about two-months presence of workers in order to estimate the probability of
their presence at work. The real number of HCW (more than 50) was reduced in our model eliminating those
who have very few presences (less than 3 shift per month). We obtain from the management of the nursing
home detailed information about workers shifts in January and March 2020. Based on this information, we
conclude that wards w1 and w2 share almost all the assigned workers, whereas wards w3 and w4 have almost
exclusive HCWs. This, probably, implies more cross contacts between the first two wards compared with
the others. On the basis of previous information, we obtained frequency tables of each operator per ward
which are used in the model to determine the probability that a given operator is present in a given shift,
in a given ward (see Tables S6 and S7).

The procedure followed in the model is as follows: for each replica, a distribution of workers for the first
shift is drawn at random. The extraction is done by ward, so if a worker does not work in a given ward
he can not be extracted. At each shift change, starting from the second one, workers are assigned to wards
using the relative frequencies calculated from Tables S6 and S7 as probabilities, respecting the rule that if
a worker is present in one shift, he can not be in the next shift.
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Table S6: Presence frequency of HCWs in wards w1 and w2.

Identifier M A N ward

1 4 1 5 w1

2 3 8 0 w1

3 6 13 12 w1

4 1 6 16 w1

5 7 2 1 w1

12 0 4 6 w1

23 2 2 3 w1

25 0 0 3 w1

34 4 2 3 w1

37 8 2 0 w1

38 4 2 5 w1

39 5 3 0 w1

40 7 8 4 w1

41 2 6 4 w1

42 2 1 0 w1

Identifier M A N ward

1 6 9 12 w2

2 12 4 0 w2

3 3 4 3 w2

4 4 6 5 w2

5 9 13 4 w2

12 13 10 7 w2

23 9 14 7 w2

25 0 0 5 w2

34 16 10 4 w2

37 4 4 0 w2

38 1 15 5 w2

39 17 11 0 w2

40 10 10 3 w2

41 14 11 3 w2

42 13 5 0 w2

We assumed that frequency of presences are constant over the simulation period.

Table S7: Presence frequency of HCWs in wards w3 and w4.

Identifier M A N ward

6 20 9 9 w3

7 14 10 10 w3

9 9 8 0 w3

10 31 5 0 w3

13 28 12 0 w3

15 4 4 0 w3

16 8 11 0 w3

17 23 15 5 w3

19 0 13 6 w3

20 4 19 14 w3

21 17 14 2 w3

22 32 2 0 w3

24 2 26 5 w3

25 0 1 14 w3

26 31 8 0 w3

28 15 1 0 w3

30 12 6 0 w3

31 10 10 0 w3

Identifier M A N ward

8 14 10 10 w4

9 10 7 2 w4

11 17 2 0 w4

14 16 9 2 w4

15 18 10 0 w4

16 5 11 0 w4

18 10 15 6 w4

25 0 0 2 w4

27 17 14 2 w4

28 4 6 0 w4

29 16 0 3 w4

30 16 3 0 w4

31 11 3 3 w4

32 0 18 15 w4

33 6 2 0 w4

35 13 2 0 w4

36 9 9 14 w4

37 4 5 1 w4
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2.1.2 Nurses (NUR)

Nurses are 8 and work just in the morning and afternoon shifts. Table S8 collects all their attendance
frequencies. In Table S8, notice the introduction of a dummy ward, indicated by w1,2. This ward allows
to model the fact that some nurses work simultaneously in wards w1 and w2 during each of their shifts.
Consequently, the attendances recorded in Table S8 are double compared to reality: they are then ”weighted”
with the information in Table S5.

2.1.3 Physiotherapists, psychologist, animator (OTH)

There are two physiotherapists, one works in the morning, the other one in the afternoon. We assumed that
their activity is equally distributed among the four wards (see Table S8). Remember that physiotherapy, like
psychological support and animation, is not scheduled on the night shift and the weekend. Table S8 allows to
assign a probability of presence to each of the two physiotherapists without additional information. There is
only one psychologist available to guests 4 days per week (not present on Thursday, Saturday and Sunday),
and one animator present from Monday to Friday. We assumed that their activity is equally distributed
among the wards, hence they are present in every ward and shift with a percentage equal to 0.125.

Table S8: Presence frequency of nurses (left) and Physiotherapists (right - from Monday to Friday).

Identifier M A N Ward

1 43 43 0 w1,2

2 7 3 0 w3

2 12 12 0 w4

3 22 19 0 w3

4 10 11 0 w3

4 2 4 0 w4

5 18 23 0 w3

5 1 0 0 w4

6 18 20 0 w4

7 24 17 0 w2

8 19 19 0 w1,2

8 6 5 0 w3

8 4 10 0 w4

Identifier M A N ward

1 0.25 0 0 w1

1 0.25 0 0 w2

1 0.25 0 0 w3

1 0.25 0 0 w4

2 0 0.25 0 w1

2 0 0.25 0 w2

2 0 0.25 0 w3

2 0 0.25 0 w4

Table S9: Flow of workers at each time step, in each ward wj : probabilities pwork(t, j, h, kh) are estimated
thanks to Tables S6-S8.

Transition Probability

at work P (W (t+∆t, j, h, kh) = {1, ·}) pwork(t+∆t, j, h, kh)
at home P (W (t+∆t, j, h, kh) = {0, ·}) 1− pwork(t+∆t, j, h, kh)

We describe the state (see Table S9) of each kind of workers by a two-dimensional variable W = W (t, j, h, kh)
that, depending on time t, ward j, kind h and identifier kh takes two values: the first concerning the presence
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in the nursing home {0 = at home, 1 = at work}, the second one the state of the infection {S = susceptible,
E = exposed, I = infected, R = removed}. Hence: W (t, j, h, kh) ∈ {0, 1}×{S,E, I,R}, with t = 1, 2, . . . , 588,
j = 1, . . . , 4, h ∈ {HCW, NUR, PHY, PSY, ANI}, kHCW = 1, 2, . . . , 42, kNUR = 1, 2, . . . , 8, kPHY = 1, 2,
kPSY = 1, kANI = 1.

2.2 Guests

The LTC facility management provided us with data relating to the number, stay, age range and allocation
in the different wards of guests during the survey period.

Given the small number of guests in the adult class, in our model we assumed that all belonged to the elderly
class. Furthermore, due to the very low number of temporary exits, we assumed that the resignations from
the structure were all permanent.

Table S10: General information on the presences of guests. Percentages are computed with respect to the
number of available beds.

# Guests w1 w2 w3 w4

passed through the ward 25 (+25%) 27 (+35%) 63 (+57.5%) 58 (+45% )
always present 13 (65%) 14 (70%) 27 (67.5%) 25 (62.5%)
beds occupied at first 15 (75%) 19 (95%) 37 (92.5%) 36 (90%)
present less than a week 2 0 3 3
present less than two weeks 4 1 7 6

The state of each guest is described by the variable G that, depending on time t, ward j and identifier k
takes one of the five possible value vacant V , susceptible S, exposed E, infected I or removed R:

G(t, j, k) ∈ {V, S,E, I,R} t = 1, 2, . . . , 588, j = 1, . . . , 4, k = 1, 2, . . . , 120.

The rate of mortality µ at which a filled bed becomes empty in a given shift and in a given ward (see Table
S11), is estimated from the real data: we calculate the sum over time (days from 1 to 196) m1 of the number
of filled beds in a ward and the sum m2 over time of the number of beds in a ward that become vacant.
The rate at which an arbitrary bed of the given ward will become vacant in a given shift is then estimated
as µ = m2/(3m1).

Table S11: Guest mortality rates µj , j = 1, 2, 3, 4.

ward w1 w2 w3 w4

µj 0.0003813337 0.0003813337 0.0011916679 0.0011916679

Remark 1 In the population we observed the high number of removed people in the elderly class. This
implies a high probability to be removed for elderly people that enter the structure during the influenza
season. In some sense, we can expect that a greater turnover in a ward contributes to limit influenza spread.
This conclusion appears to be consistent with ARs computed on real data also if it would be important to
determine temporally the rate of turnover for each ward during the influenza season.
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For what concerns the mean time of vacancy for a given bed, we assumed that a vacant bed is filled with a
probability vj estimated from real data (see Table S12): for each ward we calculate the number of shifts n1

when a bed is vacant and the number of shifts n2 when there is a new access. The probability that a bed
vacant at time t will remain vacant at time t+∆t is 1− vj = 1− n2/n1.

Table S12: Probability vj that a vacant bed be filled, j = 1, 2, 3, 4.

ward w1 w2 w3 w4

vj 0.003935458 0.003148367 0.009051555 0.008264463

Furthermore we assume that at the beginning of each season (simulation), in each ward, all available beds
are occupied and, at any time, the maximum number of occupied beds in a ward cannot exceed the number
of available beds in that ward. This last assumption is consistent with the trend in the occupancy rate of
the beds at the facility level.

Table S13 collects all previous remarks about flows of guests.

Table S13: Flow of guests at each time step, in each ward wj .

Transition Probability

mortality P (G(t+∆t, j, k) = V | G(t, j, k) = ¬V ) µj∆t
susceptible admission P (G(t+∆t, j, k) = S | G(t, j, k) = V ) s3(t)vj∆t
exposed admission P (G(t+∆t, j, k) = E | G(t, j, k) = V ) e3(t)vj∆t
infected admission P (G(t+∆t, j, k) = I | G(t, j, k) = V ) i3(t)vj∆t
removed admission P (G(t+∆t, j, k) = I | G(t, j, k) = V ) r3(t)vj∆t

2.3 Vaccination

Due to the COVID 19 pandemic, it was not possible to obtain detailed and accurate information on workers’
vaccination coverage. For this reason, we assumed the same vaccine uptake and efficacy for all the workers
categories equal to that of population u2 and ve2 (see Table S4).

The information on vaccination with the relative date is not available for all guests. We observed that known
vaccination dates were all concentrated at the beginning of our survey (simulation) period and this justifies
our assumption that all the vaccination are at time 0. On the basis of the available data, we estimated the
data relating to the vaccination coverage of the guests: uG = 0.4653.

Remark 2 The lack of information on the vaccination only concerns the guests who took over the period.
Apart from a few rare exceptions, these people do not get influenza. Some information about their distribution
are collected in Tables S14 and S15.

By previous considerations, we may suppose that ”taking over guests” could play a role in mitigating the
spread of influenza. Notice that in ward w1 new entrants are concentrated in the second part of the survey
period, so a lower mitigation effect can be expected. This could partly explain the high number of influenza
cases recorded in this ward.
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Table S14: Distribution per ward of guest with non information about their vaccination (NIV).

ward w1 w2 w3 w4

NIV 10 7 23 18

NIV/ #guests 40% 26% 36% 31%

Table S15: Temporal distribution of guests’ entrances.

Oct Nov Dec Jan Feb Mar Apr

w1 0 0 0 1 4 3 2
w2 0 2 2 1 0 2 0
w3 1 5 5 4 5 2 1
w4 0 3 1 6 3 4 1

The efficacy of the vaccination for guests in the ”baseline scenario” is 0.2, equal to that of the population
(ve3 in Table S4).
To measure the effect of the influence on the nursing home, we adopted the usual attack rate, defined for a
time interval [t1, t2] as:

AR[t1,t2] =
number of infected people in the period [t1, t2]

number of people under risk in the period [t1, t2]
.

For the calculation of the attack rate on the real data, we assumed that at time t = 0 all guests are susceptible
(under risk) and all incoming guests, if not infected, were considered susceptible.
The attack rates for ward and the entire nursing home are collected in Table S16.

Table S16: Estimated real attack rates for wards and facility.

ward w1 w2 w3 w4 nursing home

attack rate 0.56 0.3333 0.31746 0.344827 0.36416

2.4 Visitors

Consistently with what happened during the influenza season 2019-2020, we have assumed that visits take
place exclusively in the morning and afternoon shifts, and have ceased from day 133 (2020/02/24), since
the facility was closed due to the Covid 19 pandemic. All visitors belong to the intermediate age class
15− 64.Even if there was no official visitor register, we chose the most frequent age class as an assumption
in our model on the basis of quick interviews of workers. We thought that individual from other age classes
acting like visitors may have had contact pattern that closely matched or resembled the one of a middle-
age-class individual because it is unlikely that this kind of visitor went unaccompained. In other words, the
behavior of individuals belonging to extreme age classes was thought to be similar to the class age 15-64, at
least for the time spent inside the nursing home.
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We obtain some data on the weekly visits, on the basis of which we obtained the number of average visits
per capita and shift shown in Table S17.

Table S17: Number of average visits per capita and shift

w1 w2 w3 w4

0.04285714 0.04285714 0.06071429 0.0250

Given the great uncertainty about the data and smallness of per capita daily figure (about 0.1), it was
decided to multiply these averages by a factor of 4.5.

2.5 Contacts

We distinguish three types of contacts: close [1], characterized by physical contact, casual, with no physical
contacts, and ”change” which concerns the particular situation relating to the handover between workers
at each change of shift. Ten minutes before the shift change, health workers and nurses share the handover
in the infirmary of the ward. They discuss the clinical evolution of the host or the specific activities that
the guests should participate in. The difficulty of obtaining precise and attentive results when trying to
estimate interpersonal contacts is known in the literature (see [11]). To face this problem, contacts in the
nursing home were estimated by a survey: staff members were asked to register contacts, distinguishing by
type, shift, ward for a week. We calculated an average number of contacts for each type using the data of
the survey week and then we normalized with respect to the number of individuals present, obtaining the
contacts rates matrices in tables S18-S21.

Table S18: Contact rates in ward w1
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Table S19: Contact rates in ward w2

Table S20: Contact rates in ward w3
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Table S21: Contact rates in ward w4

Table S22: Contact rates for shift changes
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2.6 The spreading of influenza

Let H = {GUE,HCW,NUR,PHY,PSY,ANI}. Consider the contacts between an individual P of type
h1 ∈ H and the set IP,h2 = IP,h2(t) of individuals of type h2 ∈ H with whom P could have been potentially
in contact in a given shift.

Let Kcasual
h1,h2

and Kclose
h1,h2

be the individual contact rate (in the given shift and ward) of type casual and close
respectively between the category of individuals h1 and h2.

If the individual P is susceptible and IP,h2 contains nI
P,h2

(t) infected individuals we model the risk for the
first individual of becoming exposed (due to such contacts in the given shift) according to the Reed-Frost
equation [13]:

λP,h2(t) = 1− (1− pcasual)
nI
P,h2

(t)Kcasual
h1,h2

∆t
(1− pclose)

nI
P,h2

(t)Kclose
h1,h2

∆t
.

Notice that nI
P,h2

(t)Ku
h1,h2

∆t is just the average number of infected people of type h2 with whom P had
contacts of type u for u ∈ {casual, close} at time t.

The risk of infection for P is then given by

λP (t) = 1−
∏

h2∈H
(1− λP,h2(t)).

This is the full infection risk on P if the individual P is not a guest. For guests we have additionally to
consider the casual contacts with visitors. Let G the selected individual (previously called generically P )
when he/she belongs to the guest category. Let i2(t) be the fraction of infected visitor taken arbitrarily from
the model of the 15-64 years population at the given time-step t, and Kv the average number of visitors for
each turn and ward (remember no visitors at night, see Table S17). Set

ωv(t) = (1− pcasual)
i2(t)Kv .

The total infection risk λG,vis on the guest G (including the visitor contribution) is then given by

λG,vis(t) = 1− (1− λG(t))ωv(t).

Notice that at night the contact among guests are reduced to the casual ones among room mates but the
previous formulae still hold.

Contacts are regulated now by a single parameter pchange. The transmission between workers (hcw and
nurses) at each shift change is due to interactions of the workers of the previous shift with the ones and
of the current shift. We assume that the change of shift affects just health care workers and nurses. Let
H = {HCW,NUR}. Consider the contacts between an individual W of type h1 ∈ H and the set IW,h2 of
individuals of type h2 ∈ H with whom the worker W could have been potentially in contact in the given
shift change.

Let Kchange
h1,h2

be the expected individual contacts at the change of shift between the category of individuals
h1 and h2.

If the individual W is susceptible and IW,h2 contains nI
W,h2

(t) infected individuals set

λchange
W,h2

(t) = 1− (1− pchange)
nI
W,h2

(t)Kchange
h1,h2 .

The total infection risk of the worker W is then given by

λchange
W (t) = 1−

∏
h2∈H

(1− λchange
W,h2

(t)).

The probability that the status of a worker changes form exposed to infected in a given shift is simply given
by σ, while the probability that his status changes from infected to removed is given by γ according to the
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parameters of the population model (the same probabilities hold when the individual is at work or outside
the nursing home).
A change of status of workers form susceptible to exposed outside the nursing home occurs with probability
given by the population model (taking in mind that workers belong to the 15-64 years age class).
In the following table G and W , as before, denote a specific guest or worker, t− and t+ denote the time
before and after the shift change at time t, whereas λ2 is defined in equation 1.

Table S23: Spreading of influenza in the nursing home.

Workers Transition Probability

from S to E during shift P (W (t+∆t, j, k) = {·, E} | W (t, j, k) = {1, S}) λW (t)

from S to E during shift change P(W (t+, j, k) = {·, E} | W (t−, j, k) = {1, S}) λchange
W (t)

from S to E (at home) P (W (t+∆t, j, k) = {·, E} | W (t, j, k) = {0, S}) λ2s2(t)∆t
from E to I P (W (t+∆t, j, k) = {·, I} | W (t, j, k) = {·, E}) σ∆t
from I to R P (W (t+∆t, j, k) = {·, R} | W (t, j, k) = {·, I}) γ∆t

Guests Transition Probability

from S to E P (G(t+∆t, j, k) = E | G(t, j, k) = S) λG,vis(t)
from E to I P (G(t+∆t, j, k) = I | G(t, j, k) = E) σ∆t
from I to R P (G(t+∆t, j, k) = R | G(t, j, k) = I) γ∆t
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3 Simulations and results

3.1 Simulation plan

We carried out intensive simulation studies (784 scenarios for 200 replications each) with the dual purpose
of assessing the fitting ability of the proposed model to real data and examining some relevant public health
issues. Therefore, the simulation plan was consistently structured into a baseline scenario and some further
explorations. As for the baseline scenario, we explored the fitting ability of the proposed model by letting
varying the transmission probabilities (i.e., p change=0.05, 0.1, 0.15, 0.20, 0.25, 0.30, 0.35, p casual=(0.15,
0.20, 0.25, 0.30), and p close=2×p casual) and keeping constant the remaining parameters. Differently, the
further explorations were performed by replicating the baseline scenario for varying levels of vaccine uptake,
vaccine efficacy, and percentage of removed at time 0 of workers and guests.

Table S24: Parameters in the baseline scenario.

Symbol Meaning Value Units Ref

∆t time step (shift) 8 hours
T Duration of simulation 588 shifts
µ1 Discharge/mortality rate ward w1 0.00038 shift−1 estimated
µ2 Discharge/mortality rate ward w2 0.00038 shift−1 estimated
µ3 Discharge/mortality rate ward w3 0.00119 shift−1 estimated
µ4 Discharge/mortality rate ward w4 0.00119 shift−1 estimated
v1 Change-of-state rate ward w1 0.00394 shift−1 estimated
v2 Change-of-state rate ward w2 0.00315 shift−1 estimated
v3 Change-of-state rate ward w3 0.00905 shift−1 estimated
v4 Change-of-state rate ward w4 0.00826 shift−1 estimated
σ Incubation rate 0.1547 shift−1 estimated
γ Recovery rate 0.0582 shift−1 estimated

RW (0) Removed fraction of workers at time 0 0.10 [2, 14, 7]
RG(0) Removed fraction of guests at time 0 0.20 [2, 14, 7]
u1 Population vaccine uptake, age class 1 0.0112 [4]
u2 Population vaccine uptake, age class 2 0.0516 [4]
u3 Population vaccine uptake, age class 3 0.51 [4]
uG Guests vaccine uptake 0.4653 estimated
ve1 Vaccine efficacy age class 1 0.4544 [9]
ve2 Vaccine efficacy age class 2 0.3744 [9]
ve3 Vaccine efficacy age class 3 0.2 [9]

p casual Transmission probability casual contact 0.15-0.30
p change Transmission probability change contact 0.00-0.35

ρ Close/casual transmission probability ratio 2

3.2 Comparing real and simulated data

For each parameters’ configuration, we simulated 200 replicates, obtaining, for each of them, the value of
ARsim,k, k = 1, 2, . . . , 200. In order to compare this information with the real ARreal, we computed the
simulated AR by assuming that all guests who have been in the structure are initially susceptible. In this
way, for each simulation, we were able to compute the Root Mean Square Error (RMSE) for a given ward
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Figure S2: RMSE of ARs for, clockwise from top-left hand panel, wards 1-4.

In Figure S2 the RMSEs referred to the baseline scenario are represented, separately for each ward, as
p casual and p change vary. In these plots the levels of p casual are represented on the x-axis, the levels of
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p change are represented on the y-axis, and the plane is colored according to the RMSEs values, from white
to dark red as described in the legends on left-hand side of the plots. It is worth noting that in all wards
there is a variation in the color gradation from dark red to white along the horizontal axis only. As a result,
the empirical evidence suggest that for increasing values of p casual, the RMSE decreases. Conversely, the
parameter concerning the transmission probability p change appears to have a negligible impact on the
RMSEs. The configuration of parameters that minimizes the RMSE computed on the overall nursing home,
that is equal to 0.078, is p casual=0.3 and p change=0.2. Indeed, this comes with no surprise since the
pattern of RMSEs of the nursing home, coherently with what already observed separately for each ward, is
strongly affected by the transmission probability p casual only and the lowest values of RMSEs are observed
just in association with the largest value of this parameter.
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Figure S3: Mean (dots) and 95% CBs (black lines) of AR (present) for the levels of p casual, for each
ward.
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Figure S4: Mean (dots) and 95% CBs (black lines) of AR (present) for the levels of p change, for each
ward.

Further inspecting the baseline scenario, one might be interested in synthesizing the distribution of the AR
for varying levels of the transmission probabilities. In Figures S3, S4, and S5 we reported the arithmetic
means together with the 95% confidence bounds (CBs), both computed on the Monte Carlo replicates. First,
one might observed that results concerning wards 1 and 2 are affected by a greater variability than results
concerning wards 3 and 4; this is particularly evident by comparing the range of the 95% CBs that is around
0.8 for the first two wards, and it decreases at around 0.5 for the remaining wards. Despite an exception
concerning the CB associated to ρ = 2, all remaining CBs have a lower limits of around zero. This result
is due to the presence of structural zeros in the simulations results, i.e., a non-negligible fraction of Monte
Carlo replicates produced ARs equal to zero. In particular, the fraction of ARs equal to zero is constant
under different levels of p change and of ρ, and it is between 0.2 and 0.3 for wards 1, 2, and 4 whereas it
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is slightly less than 0.1 for ward 3. The transmission parameter p casual has an impact of the fraction of
structural zeros: the latter decreases from around 0.5 to around 0.3 as the transmission probability increases
in wards 1, 2, and 4. Also in ward 3 the parameter p casual has a decreasing effect of the fraction of ARs
equal to 0, with a variation from around 0.2 to almost 0.
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Figure S5: Mean (dots) and 95% CBs (black lines) of AR (present) for the levels of p close/p casual, for
each ward.

The effect of the parameter p casual, although not impacting the CBs, appears to be evident in terms of
Monte Carlo means. As a result, in Figure S3 it is worth noting that in all wards, and most evidently in
the first two, the AR increases for increasing levels of the transmission probability. Results concerning the
transmission probability p change (Figure S4) confirm, instead, the negligible impact of this parameter on
the ARs. Indeed, although as many as seven different values of p change have been explored in simulation
studies, the ARs appear to be almost constant within each ward. Finally, by looking at Figure S5 it appears
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that the very same considerations as those made for p change also apply to the close/casual transmission
probability ratio.
Moreover, we evaluated the results from some further explorations by inspecting the behaviour of the ARs,
separately for each ward, for varying levels of some relevant parameters. Similarly as before, results are
synthesized in terms of Monte Carlo means and 95% CBs.
Tables S25 and S26 show results referred to the levels of vaccine uptakes and vaccine efficacy of workers
and guests. Neither the vaccine uptake nor the vaccine efficacy seem to affect the ARs’ levels. Also results
concerning workers and guests seem comparable both in terms of CBs (quite large, especially in the first
two wards) and in terms of Monte Carlo means. Interestingly, the most relevant impact is provided by the
wards, with ARs that are on average between 0.4 and 0.52 in the first two wards, and between 0.23 and 0.38
in the last two.

Table S25: Mean and 95% CBs (lower bound (LB) and upper bound (UB)) of AR (present) for the levels
of vaccine uptake of workers and guests, for each ward.

Ward 1 Ward 2 Ward 3 Ward 4

Levels Mean LB UB Mean LB UB Mean LB UB Mean LB UB

w
or
ke
rs

0.00 0.46 0.00 0.80 0.46 0.00 0.80 0.34 0.00 0.50 0.28 0.00 0.50
0.05 0.46 0.00 0.80 0.46 0.00 0.81 0.36 0.00 0.50 0.27 0.00 0.52
0.25 0.47 0.00 0.81 0.47 0.00 0.81 0.35 0.00 0.53 0.26 0.00 0.51
0.50 0.41 0.00 0.76 0.45 0.00 0.76 0.36 0.00 0.56 0.27 0.00 0.48
0.75 0.47 0.00 0.76 0.49 0.00 0.80 0.36 0.00 0.54 0.26 0.00 0.50
1.00 0.43 0.00 0.76 0.48 0.00 0.81 0.34 0.00 0.49 0.28 0.00 0.49

gu
es
ts

0.00 0.52 0.00 0.86 0.53 0.00 0.86 0.38 0.01 0.57 0.31 0.00 0.56
0.25 0.52 0.00 0.86 0.48 0.00 0.81 0.38 0.24 0.54 0.29 0.00 0.57
0.46 0.46 0.00 0.80 0.46 0.00 0.81 0.36 0.00 0.50 0.27 0.00 0.52
0.50 0.44 0.00 0.82 0.47 0.00 0.81 0.36 0.00 0.51 0.27 0.00 0.49
0.75 0.46 0.00 0.76 0.42 0.00 0.75 0.34 0.01 0.49 0.25 0.00 0.46
1.00 0.40 0.00 0.73 0.39 0.00 0.76 0.32 0.00 0.52 0.23 0.00 0.43

Table S26: Mean and 95% CBs (lower bound (LB) and upper bound (UB)) of AR (present) for the levels
of vaccine efficacy of workers and guests, for each ward.

Ward 1 Ward 2 Ward 3 Ward 4

Levels Mean LB UB Mean LB UB Mean LB UB Mean LB UB

w
o
rk
er
s

0.10 0.45 0.00 0.77 0.47 0.00 0.81 0.35 0.00 0.53 0.28 0.00 0.51
0.20 0.46 0.00 0.77 0.46 0.00 0.76 0.37 0.02 0.50 0.28 0.00 0.50
0.37 0.46 0.00 0.80 0.46 0.00 0.81 0.36 0.00 0.50 0.27 0.00 0.52
0.50 0.47 0.00 0.80 0.47 0.00 0.85 0.35 0.00 0.50 0.27 0.00 0.52
0.60 0.48 0.00 0.81 0.48 0.00 0.80 0.34 0.00 0.49 0.29 0.00 0.49

g
u
es
ts

0.10 0.51 0.00 0.85 0.49 0.00 0.85 0.38 0.21 0.56 0.30 0.00 0.53
0.20 0.46 0.00 0.80 0.46 0.00 0.81 0.36 0.00 0.50 0.27 0.00 0.52
0.30 0.42 0.00 0.71 0.45 0.00 0.76 0.33 0.00 0.49 0.26 0.00 0.49
0.40 0.40 0.00 0.80 0.41 0.00 0.70 0.31 0.00 0.48 0.23 0.00 0.47

Figures S6 and S7 show results referred to levels of the fraction of removed at time zero. Focusing on the
first Figure, concerning the removed workers at time 0, once again we can observe that as the levels of the
parameter vary, both the CBs and the means are quite constant. Similarly as before, the wards seem to have
the most significant effects on the ARs. In particular, while in wards 1 and 2 we observe CBs with bounds
equal to 0 and 0.8 and an average AR of around 0.5, in wards 3 and 4 the CBs have bounds of 0 and 0.5
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and the AR decreases to around 0.3. Conversely, results concerning the removed guests at time 0 suggest
an inversely proportional link between the levels of this parameter and the average ARs that is observed in
all wards. In particular, the decreasing in the average AR goes from slightly more than 0.6 to around 0.4
in the first two wards, whereas it appears less pronounced in the last two wards where the decrease is from
slightly more than 0.4 to around 0.3. Indeed, it emerges that in the first two wards, coherently with what
observed so far, the overall ARs are larger than in the last two wards.
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Figure S6: Mean (dots) and 95% CBs (black lines) of AR for the levels of RW (0), for each ward.
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Figure S7: Mean (dots) and 95% CBs (black lines) of AR for the levels of RG(0), for each ward.

Finally, results referred to varying levels in the percentage of susceptible and in the transmission probabilities,
i.e. p casual and p change, are illustrated in Figures S8 and S9. It is worth noting that, conditionally on the
levels of either p casual or p change, the effect of the percentage of initial susceptible is sharp and impacts
not only the average ARs but also the 95% confidence bounds. Interestingly, for increasing levels of initial
susceptible the average AR increases as well, whereas the associated CBs become more tight. In accordance
to what observed so far, once more the first two and last two wards behave, in terms of ARs, comparably.
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Figure S8: Mean (dots) and 95% CBs (solid lines) of AR for the levels of p casual, for each ward for
baseline scenario (black), Initial Susceptible 31% (red), Initial Susceptible 40% (green), Initial Susceptible
50% (blue).



26 Contents
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Ward 1

p_change

A
R

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ward 2

p_change

A
R

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ward 3

p_change

A
R

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ward 4

p_change

A
R

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35

Figure S9: Mean (dots) and 95% CBs (solid lines) of AR for the levels of p change, for each ward for
baseline scenario (black), Initial Susceptible 31% (red), Initial Susceptible 40% (green), Initial Susceptible
50% (blue).
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