VirClust v2 web-server — user manual

Developer: Cristina Moraru, email liliana.cristina.moraru@uni-oldenburg.de

Web-server: virclust.icom.de

The interface for the VirClust WEB is organized in two Tab Panels, one for defining the project
and the other for running the calculations (see Figure 1).

HOME VirClust WEB DOWNLOAD

|. DEFINE PROJECT Il. RUN CALCULATIONS

Figure 1: The main Tab Panels in VirClust WEB.

Define project panel

VirClust assigns to each input dataset a project and a project ID. Once a project has been
created, it can be re-loaded at a later time, and the calculations continued or repeated with other
parameters.

Creating a new project

To create a new project (Figure 2), the user needs to provide:

- A user name and a project name. These will be used by VirClust to compose a unique
project ID.

- Aninput genomic dataset, either as i) a single multi-fasta file, containing all the genomes;
or ii) as a set of single fasta file, each containing a single contig (considered further as a
genome).

Once the above information has been provided, the “Create project” button becomes active

and the user can click it to create a new project. The ID of the project will be displayed in the

“Info Board” (Figure 3).

mailto:liliana.cristina.moraru@uni-oldenburg.de

CREATE NEW PROJECT

User name* Project name*
CMoraru MockTest
Input type

@® Nucleic acids, all genomes in a fasta file
O Nucleic acids, one genome per file**
Minimum number of genomes:

» 3 for genome clustering (steps 4-7)

» 1 for only protein clusters and annotations
Accepted input formats: .fasta, .fna or .fa
Sequence names should contain at least one letter.
** no multifasta files here
Upload input®

Browse... four_very_short_zobellviridae_

Upload complete

Create project Reset Project

* Mandatory for new projects

Figure 2: The “Create new project” panel.

Info board

Each project you create is given a project ID and can be accessed at a
later time point, as long as you have performed any calculations
(basically, pressed the “Run” button in the next tab). VirClust
calculations can take a long time and the browser can disconnect from
the server. Save the project ID, to be able to access the results later.

Valid file type(s).
Current project 1D:

P11 CMoraru MockTest 20230106203027

Figure 3: Info Board. Once the new project has been created, its ID is displayed here - see orange arrow.

Loading an existing project

Sometimes, the calculations for a certain step can take long times, especially for large datasets
and the user wants to turn off the browser or his computer and access the project the next day. Or,
after a time has passed since the last calculations, the user decides to further analyze her/his data, or
to re-calculate some steps with other parameters. This is possible by using the project ID to re-load
the data, as shown in Figure 4. Once the project has been loaded, a message about its status is shown
in the “Info Board” (Figure 5).

LOAD EXISTING PROJECT
Input a project ID

P2 CMoraru__ MockTest__ 202301041(

Load project

Figure 4: The “Load existing project” Panel. Use the project ID of a previously created project to re-load it in VirClust.

LOAD EXISTING PROJECT
Input a project ID

P2 CMoraru__ MockTest _ 202301041(

Load project

Info board

Each project you create is given a project ID and can be accessed at a
later time point, as long as you have performed any calculations
(basically, pressed the “Run” button in the next tab). VirClust
calculations can take a long time and the browser can disconnect from
the server. Save the project ID, to be able to access the results later.

Current project ID:

P2__ CMoraru___ MockTest 20230104104321 ‘/
The calculations have finished.

Figure 5: Info Board. Once the existing project has been loaded, its ID (orange arrow), as well as its status (green arrow), are
displayed here.

Run calculations Panel

The Run calculations Tab Panel is organized into three further Tab Panels, corresponding to
each branch of the VirClust workflow: i) Branch A, based on protein clusters, ii) Branch B, based on
protein superclusters, and, iii) Branch C, based on protein super-super clusters (see Figure 6).

|. DEFINE PROJECT IIl. RUN CALCULATIONS

Branch A - based on Protein Clusters Branch B - based on Protein Superclusters Branch C - based on Protein Super-superclusters

Figure 6: The three branches of the VirClust workflow.

Each Branch is further organized into four modules, each consisting of single or multiple steps
(Figure 7). Within a branch, most of the steps can be performed only sequentially, only after the
previous step has been performed. Therefore, the corresponding start calculations buttons and
parameter selectors for each step only become active if the prerequisite step has been run (see
dependencies in Figure 7). Similarly, the download results buttons for each step only become active
after the corresponding calculations have been performed.

Individual steps can also be re-calculated, for example with a different set of parameters. In
this case, all the results from downstream steps (steps depending on the step to be re-calculated, see
dependencies in Figure 7) will be removed from the project.

Branch A Branch B Branch C Step names Module
names
Protein translation
Protein
clustering
Protein clustering
Calculation of intergenomic distances
and genomic trees Genome
Splitting the genomic tree into VGCs clustering
and calculating statistics
Core
proteins

6A

5B Protein
all prots all prots || core prots annotations

InterPro {pVOGs] [VOGDB] [PHROGS] [Efam] {Efam-XC} NCBI-NR
J' View inside an annotation module.

Merge
annotations

Figure 7: VirClust workflow: dependencies between branches and steps. A step that depends on another step (indicated by

the arrow direction) will become active only after the first step has been performed. Re-calculation of one step will remove

the results from all dependent steps For example, step 3A_Plot will become active only after steps 1A, 2A and 3A have been

performed. Re-calculation of the 3A step will remove 3A_Plot, 4A, 4A_Plot, 5A and 6A_core. Inside one annotation module,

all steps for searching in databases are activated at the same time. The “merge annotations” step is activated only when at
last one database has been queried.

Branch A — Protein clustering module

Step 1A — from genomes to proteins

The first step, performing gene prediction and protein translation (Figure 8), is the
prerequisite for all the other steps in the VirClust workflow. The user can chose the genetic code for
translation (Figure 9). The default genetic code is the number 11, for bacteria, archaea, prokaryotic
viruses and plant plastids. However, the user can chose other genetic codes for translations, in case
the viruses infect other hosts or have non-canonical nucleotides. After the calculations have been
successfully performed, the download outputs buttons become active (Figure 10). The user can
download: i) a .zip archive with a protein file (.faa) per genome, ii) a .faa file with all proteins from all
genomes and iii) a “genome and protein table” in .tsv format, with all genomes and all their predicted
genes and proteins. Within a project, each protein recieves a unique identifier (proteinID), which is
independent of the genome name. This is necessary to prevent possible problems in the upstream
steps due to varying genome name formats and lengths. The correspondence between the proteinlD
and its corresponding gene and genome can be retrieved from the “genome and protein table”.

Step 1A. Genomes to Proteins

Translation table

11 --- bacteria, archaea, prokaryotic viruses and plant plastid -
Start this step

Download results

& one protein file per genome & all proteins in a single file & genome and protein table

Figure 8: Step 1A —view before calculations, when only the “Translation table” selector menu and the “start this step”
button are active.

Step 1A. Genomes to Proteins

Translation table

11 --- bacteria, archaea, prokaryotic viruses and plant plastid -

1 --- standard
2 --- vertebrate mitochondrial

3 — yeast mitochondrial

4 --- protozoan mitochondrial and mycoplasma
5 --- invertebrate mitochondrial

6 —- ciliate and dasycladaceal

9 —- echinoderm and flatworm mitochondrial
1N aunlnatic

Figure 9: Step 1A — select the desired genetic code for translation by clicking on the corresponding option in the selector
menu.

Step 1A. Genomes to Proteins

Translation table

11 --- bacteria, archaea, prokaryotic viruses and plant plastid A

Start this step DONE

Step 1A finished successfully with status 0.

Download results

X, one protein file per genome & all proteins in a single file 2, genome and protein table
a .zip archive with a protein a .faa file with all proteins a table (.tsv file) all the
file per genome from all genomes predicted genes (including
start, end, length, etc) and their

corresponding proteins
(including a unique ID for
each protein in the project) for
every viral genome

Figure 10: Step 1A — view after calculations, when the “download results” buttons are active as well. The orange arrows
indicate the “DONE” message, which is displayed next to each “start this step” button after the calculations have been
performed.

Step 2A — from proteins to protein clusters (PCs)

In step2A, the proteins from all viral genomes (produced as step 1A) are grouped into clusters,
based on their BLASTP similarity (Figure 11). The grouping into clusters will be affected by: i) the value
used as proxy for the similarity of two proteins in a query-subject BLASTP result pair; and ii) the filtering
thresholds for the query-subject pairs, which control which of the pairs resulting from a BLASTP are
representing truly similar proteins (and will be kept for clustering) and which not (and will be removed
before clustering).

There are four values that can be used as proxy for protein similarity for each query-subject
pairs (Figure 12): i) the evalue; ii) the log-evalue, representing the log10 transformed evalue, with a
cap at 200; iii) the bitscore; and, iv) the normalized bitscore (for a pair of two proteins, the normalized
bitscore is calculatd as the maximum from “bitscore for prot1-prot2 hit / bitscore for protl-protl hit”
and “bitscore for prot2-prot1 hit / bitscore for prot2-prot2 hit”).

The query-subject pairs can be removed before clustering if their: i) e-value is larger than the
given value (default is > 0.00001); ii) bitscore is smaller than the given value (default is < 50); iii)
coverage is smaller than the given value (default is < 0, meaning that coverage is not taken into
account at filtering); and, iv) the % identity is smaller than the given value (default is < 0, meaning that
protein identity is not taken into account at filtering).

After calculating this step, the user can download a genome-protein table similar to the one
from step 1A, to which a column with the corresponding PCs for each protein has been added.

Step 2A. Proteins to Protein Clusters (PCs)

Cluster based on

evalue_log -

Remove matches if

e-value > bitscore < coverage < % identity <
0,00001 50 0 0
Start this step

Download results

& genome and protein table

Figure 11: Step 2A - from proteins to PCs. The coverage and the % identity parameters have a maximum of 100 (any value
above 100 is automatically transformed to 100).

Step 2A. Proteins to Protein Clusters (PCs)

Cluster based on

evalue_log -

evalue_log

evalue

norm_bitscore coverage < % identity <
bitscore 100 100

Figure 12: Step 2A - selecting the values used as proxy for protein similarity during protein clustering.

Branch A — genome clustering module

Step 3A — hierarchical clustering of viral genomes

In step 3A (Figure 13), for each viral genome pair, an intergenomic distance is calculated based
on their PC content. Further, these distances are used to produce a hierarchical clustering tree of the
viral genomes. Two methods are available for tree calculation: “complete” and “average”. As outputs,
the user can download: i) a hierarchical clustering tree file, in the .newick format, which can be
visualized in software like FigTree (http://tree.bio.ed.ac.uk/software/figtree/) or iTOI
(https://itol.embl.de/); and ii) a matrix of the intergenomic distances, in the .tsv format.

Step 3A. Order genomes hierarchically
Agglomeration method

complete -

(J Enable bootstrapping
Number of bootstraps

100

] DONE
Start this step
Step 3A finished successfully with status 0.
Download results
X tree () X intergenomic distance matrix
A tree in the .newick format. A matrix-like table (.tsv file) with
This can be visualized in the intergenomic distances.
software like FigTree or ltol.
KPT774835.2__ Citrobacter__phage_ CWT22
HQG413451_ Vibrio__phage_ ICP2
KCT7514141__ Pseudoalteromonas__phage_ RIO_1
MF431616.1___Lentibacter__virus__vB_LenP_ICEM2
0.0
genome_name KP774835.2___ CitrobHQ641345.1__ Vibrio__phKC751414.1___ Pseuc MF431616.1___ Lentibacter_
KP774835.2_ Citrobacter__phage_ CVT22 0,00 0,80 0,69 0,64
HQB41345.1__ Vibrio__phage__ICP2 0,80 0,00 0,69 0,64
KC751414.1_ Pseudoalteromonas__phage_ RIO_ 0,69 0,69 0,00 0,57
MF431616.1__ Lentibacter__virus_ vB_LenP_ICBN 0,64 0,64 0,57 0,00

Figure 13: Step 3A — bootstrapping is disabled (default)

If the bootstrapping option is enabled (Figure 14), then the user can choose the number of
bootstraps to be performed during intergenomic distance and tree calculations. The following
probabilities will be calculated for each internal node in the tree: i) selective inference p-value (SI); ii)
approximately unbiased p-value (AU); and iii) bootstrap probability (BP) value. As a result, instead of
one tree, the user can download a .zip archive containing three trees, one for each probability (Figure

http://tree.bio.ed.ac.uk/software/figtree/
https://itol.embl.de/

14). These trees, including their internal node probabilities, can be visualized in software like FigTree
(http://tree.bio.ed.ac.uk/software/figtree/) or iTOI (https://itol.embl.de/). The bootstrapping option
is not active in the web-server if the number of genomes exceeds 50, due to computational resources

limitations.

Step 3A. Order genomes hierarchically
Agglomeration method

complete -

Enable bootstrapping

Number of bootstraps

100

Start this step DONE
Step 3A finished successfully with status 0.
Download results
X tree (3) & intergenomic distance matrix

\

The output is a .zip archive containing three trees in the .newick format. Each tree contains one of the following probabilities for
internal nodes: i) i) selective inference p-value (SI); ii) approximately unbiased p-value (AU) and iii) bootstrap probability (BP) .
The trees, including their probability values, can be visualized in software like FigTree or Itol.

| | pv_tree_au newick
| | pv_tree_bp newick

| | pv_tree_si \newick

10 HG641345.1__ Vibrio__phage__ICP2

KP7T748352_ Citrobacter__phage_ CWT22

KCT7514141_ Pseudoalteromonas__phage_ RIO_1
36

MF431616.1__ Lentibacter__virus__vB_LenP_ICEM2
0.05

Figure 14: Step 3A - bootstrapping checkbox is enabled.

Data visualization sub-step “Plot intergenomic similarities”

The intergenomic distances can be downloaded as a matrix-like table in .tsv format, which can
be opened in software like Excell. In addition, step 3A contains an data-visualization sub-step, named
“Plot intergenomic similarities”. In this step, the user can plot the intergenomic similarities (calculated
as “1 —intergenomic distance”) for all input genomes as an ordered, color-coded heatmap (Figure 15).
Several options for the formatting of the heatmap are available:

- cell width controls the size of the square in which the intergenomic similarity for each

genome pair is displayed

- row font controls the size of the genome names from the rows of the heatmap

- column font controls the size of the genome names from the columns of the heatmap

- cell font controls the font size for the intergenomic similarities

http://tree.bio.ed.ac.uk/software/figtree/
https://itol.embl.de/

legend font and legend label font control the font size of the legend title and of the legend
labels, respectively
legend height and legend width control the height and width of the legend

Step 3A. Order genomes hierarchically
Agglomeration method

complete -

O Enable bootstrapping

Number of bootstraps

1000
Start this step DEE
Step 3A finished successfully with status 0
Download results
&, tree (s) &, intergenomic distance matrix
Plot intergenomic similarities
Cell width
03
Row font column font Cell font
12 12 6 :
Legend font Legend label font
5 4
Legend heigth Legend width
9 15
DONE

Generate plot
Step 3A_Plot finished successfully with status 0

Download results

&, Similarity heatmap PDF

v

The output is PDF file containign an ordered, color-coded heatmap of the intergenomic similarities (the
reverse of the intergenomic distances). The intergenomic similarity for each genome pair is displayed as a
number in the heatmap. Several options for the formating of the heatmap are available (e.g. “cell width”

w0 KP774835.2 Citrobacter__phage CVT22

0 HQ641345.1__ Vibrio_ phage ICP2

@0 KC751414.1__ Pseudoalteromonas__phage RIO_1
MF431616.1__ Lentibacter__virus_ vB_LenP_ICBM2

ic_Distance:

cvT22
IcpP2
RIO_1

rgenonm

phage
__phage

o
=
0
5]
o

c

@@
)
o

2

Vibrio

PC_basad_|ntes

©_virus

Citrobacter
HQB413451_
Pseudoalteromonas__phage

Lentibacter

KP774835.2

KC751414.1
MF431616.1

Figure 15: Step 3A - data-visualization sub-step.

Step 4A — splitting the tree into viral genome clusters (VGCs) and calculating statistics

A hierarchical tree that groups viral genomes based on their pairwise intergenomic distance
can be further used to produce smaller viral genome clusters (VGCs), corresponding to different clades
in the tree. This splitting into VGCs is performed in step 4A (Figure 16) and is controlled by the
“clustering distance” parameter, which represents the minimum intergenomic distance two genomes
should have to be placed into the same VGC.

An example is provided in Figure 17 to Figure 20Error! Reference source not found.. A test
dataset (named here TESTA) was inputted in VirClust and a hierarchical tree (Figure 17) based on
pairwise intergenomic distances was calculated in step 3A. For visualization purposes, the
intergenomic distances have been transformed into intergenomic similarities (“1 — intergenomic
distance”) and plotted as a heatmap in Figure 18. The tree in Figure 17 can be split into several clusters,
depending on the intergenomic distance used. For example, when using an intergenomic distance of
0.9, which is the equivalent to an intergenomic similarity of 0.1, three VGCs result (Figure 19). Checking
Figure 18, we can see that the intergenomic similarities of the genome pairs in each of the three
clusters are above 0.1. When using an intergenomic distance of 0.71, which is the equivalent of an
intergenomic similarity of 0.29, the tree is split into 5 clusters Figure 20.

Step 4A. Calculate stats and split in genome clusters (VGCs)

Clustering distance®

0,9

Start this step

Step 4A finished successfully with status 0.

Download results

& genomes vs PCs table

¥

X cluster stats

\

A table (.tsv format), in which
the rows represent the viral
genomes, and the columns

represent the PCs identified in

A table (.tsv format), with all
the genomes and their
corresponding VGCs number,
and statistics (genome length,

Show only common PCs if >:

3000

DONE

& genome clusters

\

A .zip archive containing for each VGC the following:

A folder with all the viral genomes in the VGC in .fna
format, one genome per file

A file in .fna format, with all viral genomes in the
respective VGC.

A matrix-like table (in .tsv and .RDS format) with the
intergenomic similarities for all genome pairs in the
respective VGC

A table (in .tsv and .RDS format) with statistics for
every genome in the respective VGC.

the data set. When the number
ofaPCis 0, it means it is
absent from the respective
genome. Any number >0
reports how many times the
PC is found in the respective
genome.

PC number, etc).

\

VGC_1]

VGC_2]
[VGC_3]

| |VGC_1_all_genomes fna

[veC_1_dist RDS

[vae_1_dist tsv

| | VGC_1_stats RDS
£enaome_name ol PCB |PCS8 |PCB3 [PCS3 I genome_clust genome_name length gene_count Proteins_t [vGC 1 stats tov
KC751414.1__ pseudoal o 9 0 9 1AF1890211_ R 39898 58 52 VGC 2 all f
KF302037.1__Pseudoalt 0 [0 [2Av09S3142 V46012 7 a L] _2_2ll_genomes na
JQ446452.1__ salinivibr 1 1 0 o 3DQ163915.1_E 49539 70 30 | | VGC_2_dist RDS
DQ163915.1__ Bacteriof 0 0 0 o 1EnvX__ Monter 40752 61 30 | |VGC 2 dist tsv
KP774835.2__Citrobact: 0 [0 o 4HOB41M51_ N 49675 7 23 [vGC_2_stats RDS
EnvX__ Montereybay o o o o 304464521 S: 49390 75 29
MF431616.1__Lentibact 0 [0 [1)Q809650.1__ci 38889 56 26 || VGC_2 stats v
MF431615.1__ Lentibact 0 0 0 o 5KC751414.1 P 43882 57 a9 L ‘u’GC_S_aI._genomes fna
MF431617.1__|entibaci 0 0 0 0 5 KF302037.1__P: 45035 59 53 | |VGC 3 dist RDS
AF189021.1__Roseophs 0 0 0 [} 3KP774835.2__C 47636 82 30 | | vGC_ 3 _dist tev
1QB09650.1__Celeribac 0 0 0 o 1MFA31615.1_ L 40497 59 58 [vGC_3_stats RDS
AY095314.2__ Vibriophs 1 1 1 1 1MFA316161_ L 40907 55 23
HQOB41345.1__ Vibrio_j 0 1 1 2 1MFA31617.1__L 40163 58 58 || VGC_3 stats tev

Figure 16: Step 4A — splitting the genome tree into smaller clusters and calculating statistics for each viral genome. The
outputs the user can download are depicted in the lower part of the figure.

The outputs the user can download (Figure 16) are the following:
1. A table (.tsv format), in which the rows represent the viral genomes, and the columns
represent the PCs identified in the data set.
2. A table (.tsv format), with all the genomes and their corresponding VGCs number, and
statistics (genome length, PC number, etc).
3. A .zip archive containing for each VGC the following:
- Afolder with all the viral genomes in the VGC in .fna format, one genome per file
- Afilein .fna format, with all viral genomes in the respective VGC.
- A matrix-like table (in .tsv and .RDS format) with the intergenomic similarities for all
genome pairs in the respective VGC
A table (in .tsv and .RDS format) with statistics for every genome in the respective VGC.
In the above .zip archive, the input genomes are returned to the user into files/folders

corresponding to each VGC. This is very useful when working with input datasets consisting of
high genome numbers, because the corresponding heatmaps from steps 3A and 4A can be
very large, and thus, details about particular genome groups can be difficult to see. In such

cases, the genome files corresponding to each VGC can be used to create new VirClust
projects, one per each VGC of interest. This would enable the generation of smaller heatmaps,
which are easier to read and are also more suited for publication purposes.

KC751414.1 Pseudoalteromonas_ phage RIO 1
KF302037.1 _ Pseudoalteromonas__phage HPY
JO446452 1 Salinivibrio__phage_ CW02

DQ163915.1__ Bacteriophage__ PA11

KP774835.2 Citrobacter _phage CWT22

Emd_ Montereybay_ phage JGI2ZE6117J46588 1000006
MF431616.1 _ Lentibacter__virus_ vB LenF ICBEMZ

MF431615.1 _ Lentibacter wvirus_ vB LenP ICBM3
MF431617.1__ Lentibacter_virus_ vB LenP_ICBM1

AF189021.1 _ Roseophage_ 5101

ﬂ_d_f‘nlnrim+nr_?hagg_ﬁq Ii“Ea
AY095314.2 Wibriophage VpW262

HQB41345.1__ Vibria__phage_ ICP2

0.05

Figure 17: TESTA dataset — PC-based hierarchical tree generated by VirClust in step 4A and visualized with FigTree. When
using an intergenomic distance of 0.9, the tree is cut in 3 VGCs (see Figure 19), marked in blue rectangles here. When using
an intergenomic distance of 0.71, the tree is cut in 5 VGCs (see Figure 20), marked in green rectangles here.

me tan ot ore sa a0 an own oss we KEFS1414 1 Pseudoalteromonas_ phage RIO 1
o no e s0 so osn en se we [KFE30203F7 1 Pseudoalieromonas__phage HP1
we we ne me wa me we owe JOA45452 9 Salimivibrio_phage CW02

o en e owe owe weowe 01639151 Bacteriophage PA11

wa me s was s wo KPF748353 Citrobacter phage CVT22

NG 138

LTI CT)

v ws EnvX__ Montereybay_phage_ JGI26117J46588_1000005 100

o re 1an e a8 e ws MF431616.1__ Lentibacter_ virus_ vB_LenP_ICBM2 g 20
S0 L8 10w o S0 wo MF431615.1__ Lentibacter_ wvirus_ vB_LenP_ICBM3 Iuﬁ’ 80
S0 &8 N e 35 | =0 wo MF431617.1__ Lentibacter_ wvirus vB_LenP_ICBM1 _gl 70
an &8 na e s san wo AF189021.1_ Roseophage_ SI101 E 60
a0 &8 na Ma e o o Jmu%&ﬂ_1=()ehriback!=ﬂlagﬂ=P12ﬂ53L % 50
ED &2 13D W@ 98 e 10 98 w0 0B e AYUQ&314_2_WMnmage_VpV262 % 40
SO 08 WA S 180 WS RO 14b M8 180 W HQﬁ413451_Vi[rn_phm_|e_|GP2 _l
= = & @ M| = J ™ ™ ‘ﬁ
JfszEEzz2328¢88 &
r 15 %5388c000 P83 |
|8 lo |2 o 2 a 78)
3 PP 222 YR ot
PE B 282 58 2 o 82 —0
=4 I =1 E— < 8 ﬂ_:III ﬂ_::l ;I 3 E E‘ ﬂ'l
T J893%%2%855 ¢
2228 JE 78588
E Q = m LE] :: o P = T
2EER R EEEREEE
EEE |55 55 % |
s2s |80 778).
28955 1z fEY
g3 13 |388R8g8 32
5 - o o O -« o =
Pissaigeis (83
J3BE T 5%0
= a5 Lo == a2
=1 ¥ 2 @ w = 2
; [] T = = - 0
T o £ © © © g
o ShH b
g X i
¥ | = = =
=
£
L

Figure 18: TESTA dataset — heatmap of the intergenomic similarities ("1 - intergenomic distance") on which the tree in
Figure 17 is based. When using an intergenomic distance of 0.9, the tree is cut in 3 VGCs (see Figure 19), marked in blue
rectangles here. When using an intergenomic distance of 0.71, the tree is cut in 5 VGCs (see Figure 20), marked in green

rectangles here.

KC751414.1__ Pseudoalteromonas__phage RIO_1
KF302037.1___ Pseudoalteromonas__phage HP1
JQ446452.1__ Salinivibrio__phage_ CW02
DQ163915.1__ Bacteriophage__ PA11

KP774835.2__ Citrobacter__phage_ CVT22

EnvX__ Montereybay phage_ JGI26117J46588 1000006
MF431616.1___ Lentibacter__virus__ vB_LenP_ICBM2
MF431615.1__ Lentibacter__virus__ vB_LenP_ICBM3
MF431617.1__ Lentibacter__virus__ vB_LenP_ICBM1
AF189021.1__ Roseophage__SIO1

JQ809650.1__ Celeribacter__phage_ P12053L

AY095314.2__ Vibriophage__ VpV262
HQ641345.1__ Vibrio__phage ICP2

Clustering tree
[== T1 L
NN 2 aa WWwWwww

Figure 19: TESTA dataset - Hierarchical tree split at a 0.9 intergenomic distance. There are three VGCs, labeled as 1-3 in the
grey column next to the tree.

KC751414.1__ Pseudoalteromonas___phage RIO 1
KF302037.1__ Pseudoalteromonas__phage HP1
JQ446452.1__ Salinivibrio__phage CWO02

DQ163915.1__ Bacteriophage_ PA11

KP774835.2 Citrobacter__phage CVT22

EnvX_ Montereybay phage JGI26117J46588 1000006
MF431616.1___ Lentibacter _virus_ vB LenP_ICBM2
MF431615.1 _ Lentibacter virus vB LenP_ ICBM3
MF431617.1___ Lentibacter virus_vB LenP_ICBM1
AF189021.1 Roseophage SIO1

JQB809650.1__ Celeribacter__phage_ P12053L
AY095314.2 Vibriophage VpV262

HQ641345.1__ Vibrio__phage__ICP2

AN 2o WWW BT

Clustering tree
[=171 L

Figure 20: TESTA dataset - Hierarchical tree split at a 0.71 intergenomic distance. There are five VGCs, labeled as 1-5 in the

grey column next to the tree.

Data visualization sub-step “Output genome clustering PDF”
Step 4A includes also a data-visualization sub-step, labeled “Output genome clustering PDF”.
Here, the user can generate and download a complex visualization (.PDF format) of the hierarchical
clustering tree, the distribution of PCs in the viral genomes, and various genome statistics.
The components of the PDF are the following (Figure 21 panel B):
1. The clustering tree
2. Thesilhouette width
3. The VGC designation
4. A heatmap illustrating the PC distribution in the viral genomes. In this heatmap, the rows
represent the viral genomes, and the columns the PCs. The absence of a PCin a viral genome
is signaled by the white color in the heatmap. Any other color than white signifies that the PC
is present in the respective viral genome, and it encodes the number of PC copies per genome.
5. Several genome-based statistics

o genome length

o the proportion of PCs shared with any other viral genomes in the data set

o the proportion of PCs shared with other genomes in its own VGC (regardless if those
PCs are shared outside its own VGC or not)

o the proportion of PCs shared only with genomes in its own VGC

o the proportion of PCs shared with genomes outside its own VGC (regardless if those
PCs are shared within its own VGC or not)

o the proportion of PCs shared only with genomes outside its own VGC.

From the web interface, the user can select to display in the PDF all five of the above
components, or only some of them (Figure 21, panel A). For example, in Figure 20, only the tree, the
silhouette width, and the corresponding genome names are shown. In Figure 21 (see panels A and B),
all components are shown. Other formatting features that can be customized are:

tree width — the width of the tree, proportional to the heatmap

width of the VGC ID column — controls the width of the rectangle on which the VGC labels
are displayed

width of the silhouette column

width of the protein stats — controls the width of all protein stats, proportional to the
heatmap

font stats name — controls the font size for the names of each of the statistics

font stats axis — controls the font soze for the labels of each statistics X axis

column width (inches) — gives the size of a PC column in the heatmap

font PC names — controls the font size of the PC names displayed on the X-axis of the
heatmap

font genomes/VGCs Ids — controls the font size for the VGC labels and for the genome
names

legend font and legend label font — control the font size of the legend title and labels
legend height and legend width control the height and width of the legend

show only common PCs if > - controls which PCs are displayed in the heatmap. When the
number of total PCs (excluding singletons) in the data set is bigger that the given value
(default 3000), then only the columns corresponding to the most common P(SS)Cs (found
in 75% of the genomes of the genomes from each genome cluster) will be plotted. This
option is available from the main step 4A, and has to be given before the calculations
performed in 4A.

St.ep 4A. Calculate stats and split in genome clusters (VGCs)

Clustering distance* Show only common PCs if >:
0.9 3000
DONE

Start this step
Step 4A finished successfully with status 0.

Download results

& genomes vs PCs table & cluster stais X genome clusters

*The clustering distance is minimum 0.1 and maximum 1. The higher the value. the lower the number of clusters resulted. At a value of 1, all genomes will belong to the same cluster.

*Known issues: If the chosen clustering distance results in each genome forming its own VGC, then the output PDF will be empty. To solve this problem: increase the clustering distance progressively and recalculate steps
5 and 6.

Output genome clustering PDF

Show free

Tree width
30
Show VGC ID Show silhoutte width Show profein stats
Width of VGC ID column Width of silhoutte column Width of protein stats
10 s 30
Font stat name Fonts protein stats axis
2 s

Show heatmap

Column width (inches) Font P(5)Cs names
0,03 2
Other options
Font genomes/VGCs IDs Legend font Legend label font
12 20 30
Legend heigth Legend width
5 0

Step 4A_Plot finished successfully with status 0.

Download results

& clustering PDF

0 JQB809650.1__ Celenbacter_phage P12053L

[0 AY095314.2 Vibriophage VpV262
HQ641345.1__ Vibrio__phage_ ICP2

/ 23 4 5
3 KC751414.1__ Pseudoalteromonas__phage_ RIO_1
3 KF302037 1__ Pseudoalteromonas__phage HP1
< | JQ446452.1___ Salinivibrio__phage_ CW02
% 3 DQ163915.1__ Bacteriophage_ PA11
2 L] 3 KP774835.2__ Citrobacter__phage_ CWT22
[o] [EnvX__ Montereybay phage_ JGI26117J46588_1000006 E
£ 1 MF431616.1___Lentibacter__virus__vB_LenP_ICBM2 E[Jo §m?
& 1 O MF431615.1__Lentibacter__virus__vB_LenP_ICBM3 gi; § 0
E 1 kN1
O 1 H
y 5
2
2

|
0 MF431617.1__ Lentibacter__wvirus_ vB_LenP_ICBM1
L] [@ AF189021.1___Roseophage__SIO1

=
o
|

!

C.
o oas —~ —~ i Ty rroey roeee reoer T

|m|'_|N|h|m|'|mlﬂﬂl?ﬁlalfﬂlclﬁl BIEI EEERRRBHEEERERERESS 3
’EEE8888828282EEEEEQEEEEEEEEEEEEEEEEE

Figure 21: Step 4A - data-visualization sub-step (panel A), and an example of the generated PDF (panel B). To visualize
details, for example the name of the PCs in the heatmap, the zoom-in function of the PDF viewer can be used (panel C).
Panel B: 1. Clustering tree; 2. Silhoutte width; 3. VGC label; 4. Heatmap of the PC distribution in the viral genomes; 5.
Genome statistics; and 6. Genome names.

Branch A — Core proteins module

Step 5A — Calculation of core proteins for each VGC, based on their PC content

The core proteins represent a related group of proteins found in all genomes from a dataset.
VirClust considers as related all proteins in a PC (or in a PSC/PSSC, in the Branches B/C). Therefore, to
be considered as belonging to the core, a PC needs to be found in all genomes from a dataset. For the
calculation of the core proteins, VirClust considers all VGCs generated at step 4A as individual datasets.
Therefore, VirClust calculates core proteins separately for each VGC. If the user wants to calculate the
core proteins for the complete dataset inputted in VirClust, then she/he should set in step 4A the
clustering distance to 1. This will ensure that all genomes in the input dataset will be clustered in a
single VGC. Thus, in step 5A, core proteins will be searched for the complete dataset.

There are several outputs the user can download from step 5A, all found in a single .zip
archive. For a detailed description, see Figure 22.

Step 5A. Calculate core proteins for each VGCs, based on PCs

Start this step DONE

Step 5A finished successfully with status 0.

Download results

& tables and multifasta with core PCs

v

The output is a .zip archive containing for each VGCs the follwing:

- A table (.tsv and .RDS format) with each genome in the respective VGC, and their core genes and proteins.

- A .faa file with all core proteins for the respective VGC, labeled with their VirClust project protein ID

- A .faa file with all core proteins for the respective VGC, with a label composed of their PC number, genome name and

gene number
Additionally, all core proteins from all VGC can be found in the for “all proteins_indiv’ or in the multifasta file
“core prots for annots all”.
v

[all_proteins_indiv]

| | core_prots_for_annots_all faa
| | genome-cluster-2_core-proteins faa
| | genome-cluster-2_core-proteins_for_annots faa
| | genome-cluster-2_table-core-proteins RDS
| | genome-cluster-2_table-core-proteins tew
| | genome-cluster-3_core-proteins faa
| | genome-cluster-3_core-proteins_for_annots faa
| | genome-cluster-3_table-core-proteins RDS
| | genome-cluster-3_table-core-proteins tew
| | genome-cluster-1_core-proteins faa
| | genome-cluster-1_core-proteins_for_annots faa
| | genome-cluster-1_table-core-proteins RDS
| | genome-cluster-1_table-core-proteins tew

Figure 22: Step 5A — calculation of core proteins

Branches A, B and C — protein annotation modules

Step 6A/5B/5C — protein annotation

VirClust annotates proteins by searching for their homologs in the following databases:
InterPro (Finn et al. 2017), pVOGs (Grazziotin et al. 2017), VOGDB (Kiening et al. 2019), Efam (Zayed
et al. 2021), Efam-XC (Zayed et al. 2021) and NCBI-NR. After the homologs have been found, a filtering
step keeps only the best matches for each protein. Then, VirClust appends the annotation results to
the genome-protein table from step 2A/1B/1C (depending on which branch are the annotations
performed). The web interface allows the user to query one database at a time (Figure 23). The user
can choose to query all databases or only part of them. The annotation results from each database
can be downloaded individually. Moreover, the annotations from the different databases can be
merged and downloaded as one table.

In each branch, two different sets of proteins can be annotated: i) all proteins from all
genomes; ii) only the core proteins for each VGC. For large genome datasets, the annotation of all
proteins can take significant time and computational resources. Therefore, if the user needs only the
core proteins, annotating them only can result in significant time savings.

Step 6A. Annotate proteins

Chose here which of:
proteins to annotate: all +—@® all proteins and relate them to PCs O core proteins based on PCs
or only core.

Query the InterPro database using InterProScan

[«
:
i
7

Start this step

Query the pVOGs database using hhsearch

fe
T

Start this step

Query the VOGDB database using hhsearch

Start this step 3 DB re
Use these buttons to Query the PHROGS database using hhsearch
query the different — ot 4 e
databases individually. it Siee — -

Query the Efam database using hmmscan

fe
n
T

Start this step

Query the Efam-XC database using hmmscan

fe
m
T

Start this step

Query the NCBI database using BLASTP

[«
]
7

Start this step

. Merge annotation tables
Use this button to merge

all the annotation P Start this step
results into one table.

[«
7
i
7

Figure 23: Step 6A/5B/5C — protein annotation.

Activation of the annotation buttons

To annotate all the proteins from a genome dataset, VirClust needs the proteins themselves,
and their assignment to clusters (be it PCs, PSCs or PSSCs). Therefore, in any of the three branches,
the buttons of the annotation module are activated only after the corresponding steps in the protein
clustering module have been performed. For Branch A, the annotation buttons will be active only if

step 2A has been performed successfully. For Branch B, the annotations will be active only if step 1B
has been performed. And, for Branch C, the annotations will be active only if step 1C has been
performed.

To annotate only the core proteins, VirClust needs to assign first the core proteins. Therefore,
the annotation buttons for the “core proteins” option will become active only after step 5A (Branch
A), step 4B (Branch B), or step 4C (Branch C) have been calculated.

Annotation of “all proteins”

Behind the scenes, the annotation process against a single database consists of two
independent phases: i) searching the database for homologous proteins and finding the best match,
and ii) adding the annotation results to the genome-protein table, which contains also the PCs, PSCs
and PSSCs columns. When merging all annotations, the results from phase one for each database are
taken and merged with the genome-protein table corresponding to the respective branch. For the
“all proteins” dataset, the only difference between the genome-protein table between the three
branches is which protein clustering columns are present: the PCs, the PSCs, or the PSSCs column. In
Branch A, there will be a column assigning each protein to its PC. In Branch B, in addition to the PC
column, one more column will be found — the one assigning proteins to their PSCs. And in Branch C,
all three columns will be found — the one for PCs, for PSCs, and for PSSCs (the last being specific for
Branch C). Obviously, the proteins themselves in the “all proteins” dataset are the same, regardless of
the branch.

Therefore, when querying the individual databases with the “all proteins” dataset, the first
phase gives the same results in any of the three Branches (A, B or C). It follows that, is sufficient to
perform the annotations against the individual databases only in one branch (regardless if its A, B or
C) and then perform the merging of all annotations in the branch of interest (e.g Branch B, if one is
interested in having the PCs and PSCs in the results table).

Annotation of “core proteins”
The core proteins can be different between the three branches. Therefore, the user needs to
calculate them separately for each of the A, B or C branches.

The final assignment of protein annotations

VirClust returns a table summarizing the search results for all queried databases. Because the
results between the databases can be somehow different, the user should validate the annotations
and decide on a single annotation for each protein.

Considering that the proteins grouped in a PC, PSC or PSSC should have the same function,
sorting the rows in the results table based on the protein assignment to PCs, PSCs or PSSCs has several
benefits:

- It speeds up the process — many, if not all proteins in a P(SSC) will have the same results
in the individual annotations. Once the final annotation for one protein has been decided,
it can be easily transferred to the other proteins in the same PSSC.

- It allows the annotation of proteins that returned no homologs in any of the annotation
databases. As long as these proteins belong to a P(SS)C, and some other proteins in the
P(SS)C have annotations, they can be similarly annotated. Care should be taken in this
case with multidomain proteins. If during the protein clustering steps, the thresholds for
coverage are too relaxed, then it can lead to the clumping of different protein domains
into the same cluster. This is illustrated in Figure 24.

Protein A

Domain 1
—— D——— Genomes

Protein D

Protein C
—) ——| > cenome?

Protein F
—— > Genome 3
Protein G
| >_ Genome 4

Relaxed coverage: ‘ ‘
. Stringent coverage:
--> One protein cluster 9 g
--> Three protein clusters -

Figure 24: An example of multidomain proteins and assignment to protein clusters under different
coverage thresholds. Under relaxed coverage paramters, all proteins end up in the same cluster.
Under stringent paramters, the proteins end up in different clusters, depending on the domains they
contain.

Branch B — Protein clustering module

Step 1B — from protein clusters to protein superclusters

In step 1B, the PCs from step 2A are grouped further into protein superclusters (PSCs), based
on the similarities of their HMM profiles (Figure 25). To achieve that, VirClust is first calculating a
multiple alignment for each PC, and then is calculating its HMM profile. Afterwards, it compares the
HMM profiles of all PCs and, based on this comparison, it is grouping the PCs into PSCs.

The grouping into PSCs depends on the : i) the value used as proxy for the similarity of two
HMM profiles in a query-subject result pair; and ii) the filtering thresholds for the query-subject pairs,
which control which of the pairs resulting from a HMM comparisons are representing truly similar PCs
(and will be kept for clustering) and which not (and will be removed before clustering).

Similar to the step 2A, four values can be used as proxy for the similarity for each query-subject
PC pairs: i) the evalue; ii) the log-evalue; iii) the bitscore and iv) the normalized bitscore.

The query-subject PC pairs are filtered using two conditionals:

1.

The first conditional is based on their probability and their coverage: all PC pairs with a
probability AND coverage bigger (or equal) than the given values will be kept. The defaults
for this step are probability >= 90 and coverage >= 50.

The second conditional is based on their probability, coverage and alignment length: all
PC pairs with a probability, coverage AND alignment length larger (or equal) than the given
values will be removed. The defaults for this step are probability >= 99, coverage >= 20
alignment length >= 100. This step allows the catching of HMM pairs with short regions of
similarity, but of high significance.

The two conditionals work togheter with an “OR” logic. That is, a PC pair will be kept if its
matching either the first conditional or the second conditional. For the above examples,
it means that all PC pairs having a probability >= 90 and coverage >=50 OR a probability
>= 99, coverage >= 20 alignment length >= 100 will be kept.

After calculating this step, the user can download: i) a genome-protein table similar to the one
from steps 1A and 2A, to which a column with the corresponding PSCs for each protein has been
added; and ii) a .zip archive with the multiple alignments of all PCs calculated at step 2A.

Step 1B. PCs to Protein Superclusters (PSCs)
Cluster based on

evaiue | =

Keep matches if ...

conditional 1 is true

probability >= AND coverage »=
90 50

OR

conditional 2 is true:

probability >= AND coverage »>= AND alignment length >=
99 20 100
Start this step

Download results

2. genome and protein table X MSAs for PCs (NOT PSCs)

A

A table (.tsv file) that contains
for each viral genome all the
predicted genes (including

\

A .zip archive of all the
multiple alignments calculated
for each PSC from step 1B.

start, end, length, etc), their
corresponding proteins
(including a unique ID for
each protein in the project),
and their corresponding PCs
and PSCs.

Figure 25: Step 1B - from PCs to PSCs.

Steps 2B, 3B, 4B and 5B
The rest of the steps are similar to the equivalent steps in Branch A (see Figure 7). The only
difference is that they receive PSCs as input.

Branch C — Protein clustering module

Step 1C —from protein superclusters to protein super-superclusters

In Branch C, the protein superclusters (PSCs) generated in Branch B are grouped further into
protein super-superclusters (PSSCs), based on their HMM profiles. The process is similar to that from
step 1B (see Step 1B — from protein clusters to protein superclusters).

Steps 2C, 3C, 4C and 5C
The rest of the steps are similar to the equivalent steps in Branch A (see Figure 7). The only
difference is that they receive PSSCs as input.

References

Finn, R.D., Attwood, T.K., Babbitt, P.C., Bateman, A., Bork, P., Bridge, A.J., Chang, H.-Y., Dosztanyi, Z.,
El-Gebali, S., Fraser, M., Gough, J., Haft, D., Holliday, G.L., Huang, H., Huang, X., Letunic, I., Lopez,
R., Lu, S., Marchler-Bauer, A., Mi, H., Mistry, J., Natale, D.A., Necci, M., Nuka, G., Orengo, C.A,,
Park, Y., Pesseat, S., Piovesan, D., Potter, S.C., Rawlings, N.D., Redaschi, N., Richardson, L., Rivoire,
C., Sangrador-Vegas, A., Sigrist, C., Sillitoe, I., Smithers, B., Squizzato, S., Sutton, G., Thanki, N.,
Thomas, P.D., Tosatto, S.C.E., Wu, C.H., Xenarios, I., Yeh, L.-S., Young, S.-Y., and Mitchell, A.L.
(2017) InterPro in 2017-beyond protein family and domain annotations. Nucleic acids research,
doi: 10.1093/nar/gkw1107.

Grazziotin, A.L., Koonin, E.V., and Kristensen, D.M. (2017) Prokaryotic virus orthologous groups
(pVOGs). A resource for comparative genomics and protein family annotation. Nucleic acids
research, doi: 10.1093/nar/gkw975.

Kiening, M., Ochsenreiter, R., Hellinger, H.-J., Rattei, T., Hofacker, I., and Frishman, D. (2019)
Conserved Secondary Structures in Viral mRNAs. Viruses, doi: 10.3390/v11050401.

Zayed, A.A., Licking, D., Mohssen, M., Cronin, D., Bolduc, B., Gregory, A.C., Hargreaves, K.R.,
Piehowski, P.D., White, R.A., Huang, E.L., Adkins, J.N., Roux, S., Moraru, C., and Sullivan, M.B.
(2021) efam: an expanded, metaproteome-supported HMM profile database of viral protein
families. Bioinformatics (Oxford, England), doi: 10.1093/bioinformatics/btab451.

	VirClust v2 web-server – user manual
	Define project panel
	Creating a new project
	Loading an existing project

	Run calculations Panel
	Branch A – Protein clustering module
	Step 1A – from genomes to proteins
	Step 2A – from proteins to protein clusters (PCs)

	Branch A – genome clustering module
	Step 3A – hierarchical clustering of viral genomes
	Data visualization sub-step “Plot intergenomic similarities”

	Step 4A – splitting the tree into viral genome clusters (VGCs) and calculating statistics
	Data visualization sub-step “Output genome clustering PDF”

	Branch A – Core proteins module
	Step 5A – Calculation of core proteins for each VGC, based on their PC content

	Branches A, B and C – protein annotation modules
	Step 6A/5B/5C – protein annotation
	Activation of the annotation buttons
	Annotation of “all proteins”
	Annotation of “core proteins”
	The final assignment of protein annotations

	Branch B – Protein clustering module
	Step 1B – from protein clusters to protein superclusters
	Steps 2B, 3B, 4B and 5B

	Branch C – Protein clustering module
	Step 1C – from protein superclusters to protein super-superclusters
	Steps 2C, 3C, 4C and 5C

	References

