
Supplementary Information

In section S1, we demonstrate how we determined likely direct transmission events. Section S2
contains all the sample-related metrics for the inferred transmission pairs. In section S3, we introduce
the mathematical model used in our test for inferring selection. We check that the model produces
correct p-values in section S4 and assess the sensitivity to detect selection in section S5. Finally,
section S6 lists the heatmaps for number of amino acids per position within every HIV-1 reading frame
and p-values for all tests performed.
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S1 Pairing recipients with potential transmitters

In order to pair transmitters, who may have transmitted the virus, with their respective recipients,
we consider the similarity between the consensus sequences of the HIV-1 population they harbour
and further clinical and epidemiological parameters. We first calculate a distance score between all
samples of all patients in the ZPHI and SHCS cohorts and combine this data with ART history, risk
group, viral load time course, and estimated day of infection to determine the final transmitter-recipient
relationships. Here, we define the similarity distance ranking between the viral consensus sequences.

Due to intra-host viral genetic heterogeneity, consensus sequences can contain ambiguous characters,
such as for instance K, which denotes a multi-allelic locus where both G and T occur. They are thus
defined as strings over an extended alphabet, the IUPAC nucleotide code, ignoring indels. Let α and
β be two such aligned sequences of length L. We generalise the Hamming distance and define the
non-symmetric transmitter-to-recipient distance

d(α, β) = 1− 1

L

L∑
i=1

|αi ∩ βi|
|βi|

∈ [0, 1] (S1.0-I)

where αi and βi denote the expanded set of all bases at locus i in consensus sequence α and β,
respectively. For example, for transmitter sequence GGG and recipient sequence KKK, we find

d (GGG, KKK) = 1− |{G} ∩ {G,T}|
|{G,T}| = 0.5

whereas if we consider transmitter and recipient interchanged

d (KKK, GGG) = 1− |{G,T} ∩ {G}|
|{G}| = 0

In this example, the transmission KKK → GGG is more likely, because the sequences are closer to each
other, than GGG → KKK. The rationale lies in not penalising heterogeneity in the transmitter due to
many ambiguous bases, but rather in how well the bases of the recipient can be explained as a subset
of bases of the transmitter. If both sequences contain no ambiguous characters, then (S1.0-I) reduces
to the (symmetric) normalised Hamming distance.
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Figure S1-1. Scatter plots of distances between all recipients and potential transmitters for the
three genes gag, pol and env. The solid line represents the fit of the Deming regression and its
slope is denoted by a. The correlation between the distances of gene pairs is denoted by the Pearson
correlation coefficient ρ.
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In order to judge whether a distance between a recipient and a prospective transmitter can be
considered significantly close, we determine empirical thresholds on the basis of the background
distribution of these relative distances between unrelated recipients and transmitters. The background
distribution consists of the entirety of all computed pairwise distances and is described by the sample
mean µ and sample standard deviation σ. To account for heterogeneity in substitution rates, we
calculate relative transmitter-to-recipient distances for the gag, pol and env genes separately. From the
distribution of distances, we normalise the distances of gag and env to the pol distance by performing
a Deming regression with the intercept fixed to the origin (Beijk et al. (2008), Figure S1-1). Finally,
the average genomic distance between a recipient and potential transmitter is the mean of these three
normalised distances (or any subset of them if an amplicon happened to have failed during sample
preparation). The lower acceptable threshold for a transmitter-recipient pair is then µ− 3σ = 2.0%,
and the upper acceptable threshold is µ− 2σ = 3.2%. Distances below the lower threshold are strong
indicators of a possible transmission pair, distances between the lower and upper threshold are only
considered with strong diagnostic or expert-guided anamnestic evidence, and distances above the upper
acceptable threshold are not considered for a transmission relationship and will be discarded.
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Figure S1-2. Histograms of distributions of distances between all recipients and potential
transmitters for the three genes gag, pol and env. The histograms on the left represent
unnormalised differences. The histograms on the right represent the distances normalised to
the levels of pol by dividing their distances by the slope of the Deming regression from Figure S1-1.
The dotted and dashed vertical lines denote the lower acceptable respectively upper acceptable
threshold.

This procedure resulted in a total of 30 matched transmitter-recipient pairs. They are listed in
Table S1-1 with clinical co-variates and their pairwise consensus sequence distances.
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Pair Transmission Interval Viral load CD4 count Infection stage dweighted dgag dpol denv
mode in days HIV-1 RNA copies / ml plasma cells / ml blood of transmitter [%] [%] [%] [%]

1 T MSM −20 43,200 422 chronic
0.1 0.2 0.1 0.1R 26 373,000 430

2 T MSM −451 1,090,000 493 chronic
0.9 1.1 0.9 2.2R 60 1,630,000 474

3 T MSM 33 2830 595 chronic
0.3 0.7R 61 5,970,000 362

4 T MSM 64 204,000 619 acute
0.8 1.2 1.3 0.9R 63 191,000 355

5 T MSM −4 967,000 427 acute
0.0 0.0 0.1 0.1R 35 168,000 362

6 T MSM 96 87,000 367 acute
0.4 0.2 0.2 1.7R 103 8960 325

7 T HET 49 18,300 416 chronic
1.6 0.3 2.6 4.5R 42 412,857 625

8 T MSM 160,500 506 chronic
0.3 0.6 0.4 0.5R 21,100 N/A

9 T MSM −52 101,500 325 chronic
0.8 1.1 0.5 2.5R 81 149,000 400

10 T MSM 60 19,800 617 N/A
0.2 0.3 0.2 0.6R 31 2,220,000 643

11 T MSM 170 34,600 115 chronic
0.4 0.7 0.4 0.6R 84 14,400 656

12 T MSM 53 111,000 449 chronic
0.3 0.2 0.4 0.7R 21 105,000 327

13 T MSM −146 4310 356 chronic
0.5 0.5 0.5 1.4R 28 1,090,000 493

14 T HET 63 257,532 623 recent
0.1 0.1 0.2 0.2R 49 428,000 N/A

15 T MSM 52 8780 472 chronic
0.4 0.8R 56 56,300 564

16 T MSM −860 6470 384 chronic
1.2 1.0 1.6R 491 10,200 437

17 T MSM 86 26,000 293 chronic
0.5 0.7 0.4 1.5R 29 170,000 300

18 T MSM 145 11,700 1024 acute
0.1 0.2 0.1 0.4R 117 146,000 321

19 T MSM −721 583,000 N/A chronic
1.1 1.8 1.0 1.9R 77 470,000 296

20 T MSM 123 1950 430 chronic
0.6 0.3 1.8R 22 50,800 603

21 T MSM −7 60,200 378 chronic
0.7 2.0 0.5 0.5R 21 430,000 302

22 T MSM 229 227,071 500 chronic
0.8 0.6 1.0 1.9R 154 173,379 489

23 T MSM 69 38,109 196 acute
0.2 0.4 0.1 0.5R 49 10,000,000 287

24 T MSM 270 133,000 509 chronic
0.6 0.6 0.6 1.4R 66 97,000 174

25 T MSM 52 23,800 506 N/A
0.3 0.2 0.2 0.8R 55 2,610,000 315

26 T MSM 335 691,830 380 chronic
0.2 0.4 0.2 0.4R 42 3560 559

27 T MSM 61 24,042 325 chronic
0.4 0.2 0.5 1.4R 110 40,763 468

28 T MSM 237 208,000 197 chronic
0.4 0.2 0.8 0.8R 35 29,300,000 226

29 T MSM 2 94,700 492 N/A
0.4 0.4 0.6 0.6R 30 32,800 834

30 T MSM 50 9440 508 chronic
0.1 0.1 0.1 0.5R 44 1,170,000 247

Table S1-1. Characteristics of the 30 transmitter-recipient pairs. Here MSM denotes transmissions
between men who have sex with men, whereas HET denotes heterosexual transmission. The interval
in days is the time span between sample date and estimated date of infection (EDI), where negative
intervals come from transmitters that were sampled before the EDI. The viral load and CD4 count
have been measured at the time the sample was taken. The d(·) columns are for the previously
calculated genes respectively weighted relative distances of all genes between transmitter and
recipient.
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S2 Next-generation sequencing statistics

Pair raw reads aligned reads fraction amplicon A amplicon B amplicon C amplicon D amplicon E
gag – pol pol pol – vpu vpr – gp41 gp120 – nef

1 T 1,010,840 616,858 61.0% 14,262 14,965 23,677 17,078 14,805
R 548,394 345,984 63.1% 6237 8890 6701 10,335 10,299

2 T 2,363,774 1,373,208 58.1% 24,444 33,059 52,330 32,168 23,583
R 383,880 283,802 73.9% 5651 6310 9553 6658 5255

3 T 2,008,050 306,556 15.3% 0 0 0 48,128 1
R 496,184 330,078 66.5% 5321 7921 7767 9005 7113

4 T 1,326,216 734,294 55.4% 17,801 24,106 22,996 22,012 22,665
R 772,552 465,740 60.3% 15,888 14,083 1 12,250 18,169

5 T 1,204,900 760,350 63.1% 28,945 13,913 16,688 12,844 16,613
R 829,964 511,838 61.7% 8202 13,419 17,935 10,952 19,655

6 T 1,827,006 1,290,102 70.6% 28,549 47,391 36,286 41,191 39,938
R 1,275,938 738,344 57.9% 8324 32,471 33,717 26,988 7109

7 T 976,420 330,748 33.9% 7517 7898 8576 13,420 8265
R 1,408,788 557,530 39.6% 15,302 15,294 8648 27,698 10,507

8 T 2,983,738 1,071,686 35.9% 16,901 25,498 17,016 37,611 37,633
R 1,669,418 1,111,106 66.6% 42,628 30,394 23,909 29,125 36,473

9 T 3,045,988 873,116 28.7% 18,814 31,957 20,327 20,666 19,411
R 2,363,308 1,554,154 65.8% 49,812 37,580 43,342 32,717 42,284

10 T 2,940,066 837,538 28.5% 31,262 22,530 20,229 19,463 23,176
R 529,382 308,928 58.4% 13,858 2 0 0 38,793

11 T 2,271,618 767,366 33.8% 18,698 25,124 19,429 16,500 26,844
R 1,186,172 714,036 60.2% 29,603 28,473 19,391 9599 11,939

12 T 2,024,942 817,530 40.4% 10,914 36,474 8406 32,177 25,434
R 1,016,076 347,702 34.2% 10,356 2518 9886 15,426 5253

13 T 2,486,864 925,342 37.2% 25,615 17,161 22,806 23,588 37,368
R 2,363,774 1,373,208 58.1% 24,444 33,059 52,330 32,168 23,583

14 T 3,759,898 1,341,326 35.7% 40,059 0 40,757 39,834 34,610
R 1,810,800 1,355,040 74.8% 46,339 13,972 45,339 44,861 27,602

15 T 1,317,164 412,320 31.3% 30,358 1 0 1 23,613
R 968,980 325,430 33.6% 0 0 17,013 23,361 16,067

16 T 1,331,968 618,774 46.5% 29,254 22,446 32,310 0 6918
R 630,316 120,392 19.1% 7314 9653 0 0 0

17 T 1,048,000 361,376 34.5% 7726 5205 4176 15,539 12,966
R 670,036 282,286 42.1% 8027 10,852 16,204 13,602 0

18 T 1,532,694 750,230 48.9% 36,573 2 36,044 0 27,333
R 1,987,742 1,121,518 56.4% 38,970 19,896 23,864 44,937 27,070

19 T 1,347,212 511,888 38.0% 15,749 9332 10,116 23,179 10,429
R 967,458 173,226 17.9% 2566 8200 6438 3275 5148

20 T 955,798 359,270 37.6% 1 11,412 15,128 8055 15,936
R 800,882 534,300 66.7% 0 15,343 0 23,908 32,984

21 T 1,480,150 408,196 27.6% 11,676 22,914 26,852 0 5194
R 479,692 171,942 35.8% 9482 1580 1544 15,537 2159

22 T 1,878,320 853,640 45.4% 30,494 0 21,484 24,037 34,199
R 1,461,076 289,924 19.8% 11,094 2 12,586 15,693 6607

23 T 1,299,418 439,690 33.8% 30,489 0 0 1 40,084
R 459,734 130,094 28.3% 1352 2415 1584 1 13,040

24 T 1,734,882 415,668 24.0% 4491 9213 4739 46,431 3820
R 784,992 291,082 37.1% 8732 15,432 7890 3910 4700

25 T 1,064,834 233,300 21.9% 5858 0 13,615 12,116 5768
R 816,466 268,386 32.9% 7098 3232 9802 26,180 680

26 T 2,719,002 1,389,468 51.1% 34,784 52,475 25,991 21,910 31,423
R 173,806 47,784 27.5% 1504 2302 1843 1902 1106

27 T 1,497,668 529,844 35.4% 42,978 1 0 0 27,274
R 426,496 135,910 31.9% 7876 5620 4233 0 2993

28 T 1,410,508 447,986 31.8% 10,211 4865 31,045 1534 13,222
R 570,904 127,652 22.4% 4729 1492 7213 5272 1786

29 T 1,978,482 884,750 44.7% 15,074 15,699 27,310 22,123 23,733
R 413,578 163,606 39.6% 5288 5948 10,380 5455 2151

30 T 1,015,422 250,932 24.7% 3014 0 8113 21,758 2029
R 406,356 126,946 31.2% 2871 6192 3261 3372 1554

Table S2-1. Sequencing statistics of the transmitter and recipient NGS data of all 30 pairs. The
raw number of reads used for alignment and the number of reads in the final alignment are depicted
in the second respectively third column. The fraction of aligned reads is shown in the fourth column.
Finally, the average coverages for the five amplicons are shown in the last five columns.
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S3 SeTesT: A statistical test for selection during transmission

We would like to detect changes in the composition of a virus population that occur during transmission
from one host (the transmitter) to another (the recipient) and cannot be explained by random fluctuation
alone. Such a situation may be indicative of selection acting on the virus population and may point
to specific genotypes that are selected for or against during transmission. The difficulty in detecting
selection during viral transmission lies in the large amount of random genetic drift that the transmitted
virus population experiences initially, because typically only a very small number of virus particles
are successfully transmitted. This transmission bottleneck creates strong random fluctuations that
are difficult to distinguish from selective forces. It is critical to account for this effect in the testing
procedure; otherwise the test would lead to hugely inflated false positive rates.

We model the transmission bottleneck explicitly as follows. We assume a very large (infinite)
population size in the transmitter and a very small (finite) initial population size in the recipient. For
transmission, we sample viruses from the transmitter population with probability proportional to
their transmission fitness. Since the size of the recipient population is unknown, we account for this
uncertainty by modelling the bottleneck size as an additional random variable.

The genomic composition of both the transmitter and recipient virus population have been
assessed using next-generation sequencing (NGS). We regard these two sequencing read data sets
as samples from the underlying genotype distributions of the respective virus populations. The
test is based on comparing these distributions directly (rather than estimating model parameters).
Significant differences between the two genotype distributions indicate deviation from neutrality
during transmission, where the null distribution is designed in such a way that it accounts for variation
due to the transmission bottleneck of unknown size.

In the following sections, we define the statistical test, called SeTesT (Selection Test in Transmission),
formally and then assess its performance. We start by introducing a generative probabilistic model for
the observed data, then we develop the test for a single locus of the viral genome and finally extend the
framework to multi-locus genotypes. SeTesT is available at https://github.com/cbg-ethz/
SeTesT.

S3.1 Probabilistic graphical model for read count data

Consider a single locus with a total number of K different observed genotypes. We first develop a
probabilistic graphical model of the observed read count data and the underlying (unobserved) virus
populations.

The virus population of the transmitter is assumed to be of infinite size. Hence it is described by a
probability distribution over the K genotypes,

p ∈ ∆K−1
R :=

{
(p1, . . . , pK) ∈ RK

>0

∣∣∣∣∣
K∑
k=1

pk = 1

}
(S3.1-I)

where pk is the relative frequency of genotype k in the population. The virus population in the recipient
is assumed to be of finite size N > 0 and defined as

Z ∈ ∆K−1
N (N) :=

{
(Z1, . . . , ZK) ∈ NK

≥0

∣∣∣∣∣
K∑
k=1

Zk = N

}
(S3.1-II)
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Figure S3.1-1. Probabilistic graphical model for observed genotype data. The transmitter read
count data is the finite sampleX with a total of m reads. The underlying virus population is p. The
finite virus population in the recipient is denoted byZ and an NGS sample Y with a total of n reads
is drawn from it. The random variable N represents the unknown number of viruses transmitted
and acts as a bottleneck parameter. If selective forces are absent, the fitness landscape f is flat and
only stochastic forces shape the recipient virus population.

such that Zk is the absolute frequency of genotype k in the population. The relative frequencies are
denoted by q = Z/N . Both p and Z (and hence q) are hidden random variables since we cannot
observe the virus populations directly.

Since the total number of successfully transmitted viruses, N , is unknown, we model it as a random
variable following a 0-truncated Poisson distribution with parameter λ,

N ∼ Pois\{0}(λ) (S3.1-III)

The rationale of this distribution lies in the fact that a very large population of viruses attempt to
establish an infection, while only a very small mean number λ of viruses succeed. The distribution
has positive support, because we condition on non-extinction, i.e., we know that an infection was
established and that at least one virus had to be transmitted successfully.

We assume that the recipient virus population is the result of sampling virus particles with
replacement from the transmitter population according to their transmission fitness. This amounts
to a single-step Wright-Fisher process, a stochastic process with wide application in population
genetics (Nowak, 2006), primarily to model the effects of genetic drift, i.e., random sampling in finite
populations. Here, we employ it to model the effect of the transmission bottleneck.

We denote the fitness landscape by f ∈ RK
>0. Since we model only relative fitness, we set

f1 = 1 without loss of generality. The probability of sampling genotype k is proportional to its
relative frequency in the transmitter, pk, and to its fitness, fk. The transmission kernel ψ (p,f) of the
Wright-Fisher process is thus

ψk (p,f) =
pk fk∑K
l=1 pl fl

, k = 1, . . . , K (S3.1-IV)

and the successfully transmitted founder population Z is obtained as the multinomial sample

Z | (p, N,f) ∼ Mult (ψ (p,f) , N) (S3.1-V)

Finally, we regard the observed NGS read count data as a finite sample of the corresponding virus
population. For the transmitter, the m observed reads are modelled as

X | (p,m) ∼ Mult (p, m) (S3.1-VI)
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q̂ = y/n

‖p̂− q̂‖2

Figure S3.2-2. Construction of the test statistic. The simplex ∆2
R for the K = 3 genotypes A, B,

and C is shown in light grey, with realisations of the transmitter virus population p̂ and the recipient
virus population q̂. All three viral genotypes are present in the transmitter, but only genotype
A in the recipient. This is due to fixation of A and extinction of B and C during transmission.
The test statistic is the Euclidean distance between the two virus populations, with a realisation
t = ∥p̂− q̂∥2 (dashed line). It captures the change the transmitted population has experienced.
Once this change exceeds a critical threshold, the null hypothesis of neutral transmission is rejected,
indicating that certain genotypes were selected for or against.

and similarly the n reads of the recipient as

Y | (q, n) ∼ Mult (q, n) (S3.1-VII)

The complete probabilistic graphical model for (X,Y ) is defined by the parameters p, f and λ in
equations (S3.1-III)–(S3.1-VII) and summarised in Figure S3.1-1.

S3.2 Testing procedure

In the absence of selection, there are no fitness differences between the genotypes and hence they are
sampled from the transmitter virus population with probability p as in a neutral Wright-Fisher process
to found the recipient population. To detect deviation from neutrality, we define the test statistic

T := ∥p− q∥2 (S3.2-VIII)

as the Euclidean distance between the virus populations in the transmitter and recipient. Thus, T
measures the amount of genetic change experienced by the population moving through the transmission
bottleneck (Figure S3.2-2). Large values of T indicate deviation from neutrality and that selective
pressure has shaped the recipient virus population. In order to make such a call, we need to estimate T
from the observed data and compare it to the distribution of T under the null hypothesis of neutrality.

Let x be an observation ofX , i.e., a collection of m genotypes (observed on NGS reads) sampled
from the transmitter virus population, and similarly y an observation of Y , i.e., a collection of n
genotypes sampled from the recipient virus population. We estimate the relative genotype frequencies
in the underlying populations as p̂ = x/m and q̂ = y/n. The observed test statistic is then

t = ∥p̂− q̂∥2 (S3.2-IX)
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In order to assess the distribution of T under the null, we use the generative model from above
(Figure S3.1-1) with a flat fitness landscape f = (1, . . . , 1). We fix p ≈ p̂ throughout. This
simplification ignores the uncertainty in the parameter estimate, but we show later that it is negligible
for realistic values of λ and hence does not affect the type I error rate of the test. We draw samples of
T as follows:

N ∼ Pois\{0}(λ) (S3.2-X)
Z ∼ Mult (p, N) (S3.2-XI)
Y ∼ Mult (Z/N, n) (S3.2-XII)
T = ∥p− Y /n∥2 (S3.2-XIII)

For a total of R Monte Carlo samples T1, . . . , TR obtained independently and identically in this manner,
the p-value is approximated as

1

R

R∑
r=1

1 {Tr ≥ t} (S3.2-XIV)

which is the fraction of times the simulated value of T exceeds or is equal to the observed one.

S3.3 Estimating the mean number of founder viruses, λ

It remains to determine the parameter λ of the 0-truncated Poisson distribution (equations (S3.1-III) and
(S3.2-X)). Instead of estimating λ from the data, we use prior information to set λ. Keele et al. (2008)
analysed a cohort of 102 transmission pairs and showed that 78 HIV-1 infections by sexual transmission
were most likely founded by exactly one virus. The remaining 24 infections were established by two
or more viruses. Thus, we estimate the probability of a transmission being founded by exactly one
virus to be 78/102.

The 0-truncated Poisson distribution has the probability mass function

Pois\{0}(k;λ) =
Pois(k;λ)

1− Pois(0;λ)

and hence the probability of k = 1 virus being transmitted is λe−λ/(1 − e−λ). We estimate λ by
solving numerically the equation

78

102
=

λe−λ

1− e−λ

to find λ̂ = 0.515. We fix λ = λ̂ throughout. The distribution Pois\{0}(k; λ̂) has the expected value
1.78 meaning that we assume that the recipient virus population is founded on average by 1.78 virus
particles.

S3.4 Multi-locus genotypes

The generative model and statistical test described above assume K different genotypes at a fixed
genomic locus. We now focus on multi-locus genotypes. The number K of different genotypes will
then generally be much higher. A significant practical complication arises due to divergent evolution
occurring between the time of transmission and the time of sample collection. In multi-locus genotypes,
the probability of a change occurring in this time period increases rapidly with the number of loci. The
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Figure S3.4-3. Illustration of divergence between transmitter and recipient. In this example,
the transmitter harbours K = 5 genotypes. At some point, a transmission event occurs and the
recipient receives virus of two different genotypes from the transmitter after having passed the
recipient’s mucosal membrane (pink) and evaded the immune system, denoted b(1) and b(2), which
originated from a(2) and a(5), respectively. Meanwhile, weeks up to months can pass before such
a transmission event is registered by the Swiss HIV Cohort Study and plasma samples can be
collected. In this time, the intra-host HIV-1 populations in both transmitter and recipient diverge
due to substitutions, insertions and deletions in their genomes, making a perfect match between
the genotypes of transmitter and recipient unlikely. In addition, genotypes can go extinct due to
intra-host evolution, such as is the case for genotype a(4) in the transmitter, which goes extinct
before sample collection.

observed transmitter and recipient multi-locus genotypes may therefore have very little exact overlap,
and the test would not be applicable (Figure 4, S3.4-3).

In order to still be able to perform our test on such disjoint sets of sequences, we modify the test
statistic T slightly and account for divergent evolution in the recipient. Our goal is to match recipient
with transmitter multi-locus viral genotypes, such that their frequencies can again be compared using
SeTesT. We consider a substitution model to measure divergence and take the uncertainty in the
matching into account. In the following, we use a substitution model for amino acids, but similar
models can be used for nucleotide substitutions in DNA sequences.

Let the genotypes a, b be amino acid sequences of length L, where a = (a1, . . . , aL) , ai ∈ A was
observed in the transmitter and b = (b1, . . . , bL) , bi ∈ A in the recipient, with A denoting the set of all
20 canonical amino acids. We assume the sequence sites to be independent and model the probability
that the ancestor a has evolved into the descendent b in time τ as

P (b | a; τ) = P (b1, . . . , bL | a1, . . . , aL; τ) =
L∏
i=1

P (bi | ai; τ) (S3.4-XV)

Employing Bayes’ theorem we obtain for the probability of descendant b having as ancestor a

P (a | b; τ) = P (a; τ) · P (b | a; τ)
P (b; τ)

=
L∏
i=1

πai · P (bi | ai; τ)
πbi

(S3.4-XVI)

where π and P (bi | ai; τ) will be defined below by a standard amino acid substitution model.
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We estimate q now by considering for each recipient sequence all transmitter sequences as potential
ancestors, weighted by the probability (S3.4-XVI). Let X and Y denote the set of sequences in the
transmitter and recipient, respectively. The estimate of the recipient virus population is then

q̂a =
1

n

∑
b∈Y

P (a | b; τ) yb for all a ∈ X (S3.4-XVII)

It assigns the count mass yb of recipient genotype b to genotype a of the transmitter with probability
P (a | b; τ), which we regard as the certainty in being able to match sequences. For multi-locus
genotypes, we use the estimate (S3.4-XVII), rather than y/n, in the test statistic (S3.2-IX).

We use the formulation by Nickle et al. (2007) as the basis for our substitution model. For the
amino acid transition probabilities P (τ) = [P (W | V ; τ)]V,W∈A, we have

d

dτ
P (τ) = r · diag (π)Q · P (τ) (S3.4-XVIII)

whereQ denotes the within-HIV-1 substitution matrix as estimated by Nickle et al. (2007). The vector
π = (πV )V ∈A represents the equilibrium probability distributions for time τ → ∞, and r the average
substitution rate per unit of time. The solution of this linear ordinary differential equation (ODE) is

P (τ) = exp {r · diag (π)Q · τ} (S3.4-XIX)

In practice, we employ an efficient numerical ODE solver as the spectral decomposition is usually not
tractable. Furthermore, we constrain the parameters of the original matrixQ such that∑

V ∈A

πV [diag(π)Q]V,V = −1

This translates into requiring the average substitution rate per unit of time to be 1.

As most recipients in our data are acute cases, they tend to harbour homogeneous viral populations.
For this reason, we cannot, in general, estimate the average substitution rate r of (S3.4-XIX). Instead,
we set r = 4.6 · 10−5 per day from Li et al. (2007) for amino acids.

It should be noted that substitution rates are only weakly related to mutation rates, for a number of
reasons. The overall substitution rate is a product of many factors in the evolutionary process, such as
fixation, synonymous and non-synonymous mutations, hitchhiking, recombination, etc. The mutation
rate is a biochemical parameter characterising the viral reverse transcription process. Furthermore,
both quantities have different units: substitution rate is a change per time interval, whereas mutation
rate is a probability per replicated template base.

S3.5 Discussion of alternative statistical testing approaches

Given the nature of the observed data and the probabilistic model introduced above, at least two
alternative strategies to test for departure from neutrality may be considered.

Tests for contingency tables. The observed genotype counts (x, y) in the transmitter and recipient
form a 2×K contingency table. As such, a significant difference between transmitter and recipient
population could be detected by employing general tests for contingency tables, for example, Fisher’s
exact test or χ2 tests. However, such an approach is insufficient: All general contingency table analysis
ignores the extra variance introduced by the hidden random variables Z and N that account for the
(strong) transmission bottleneck and would therefore massively inflate the false positive rate.
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Likelihood ratio tests. In terms of our generative model (with f1 = 1 fixed), the null hypothesis
may be stated as H0 : f = (1, . . . , 1), i.e., the fitness landscape is flat and during transmission
the virus population is affected only by random sampling. The alternative hypothesis, namely that
selection acts during transmission, is stated as HA : fk ̸= 1 for at least one genotype k ̸= 1. Testing
this hypothesis directly requires tackling multiple challenges: First, there are no general solutions to
statistical hypothesis testing in the presence of nuisance parameters. A popular method for testing in
the presence of nuisance parameters is the likelihood ratio test. However, the asymptotic distribution
of the likelihood ratio is well understood only if the maximum likelihood parameter estimates lie in the
interior of the parameter space. In our situation, this will most often not be the case for the recipient
virus population q. Instead it will lie on a face of the probability simplex, because passing through the
bottleneck Z will cause fixation and extinction of some of the genotypes.
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S4 Validating the false positive rate

In order to judge whether a statistical test properly accounts for type I error rates, the distribution
of p-values under H0 is to be analyzed. A test yielding valid p-values is defined as Pθ(p ≤ α) ≤ α
for all possible values of α and θ ∈ Θ, where θ denotes some point of the parameter space Θ of the
statistical model (Harrison, 2010). If strict inequality Pθ(p ≤ α) < α holds for some θ ∈ Θ, then the
test is referred to as conservative, whereas if equality Pθ(p ≤ α) = α hold, the test is termed exact.
On the other hand, if there exists some θ ∈ Θ such that Pθ(p ≤ α) > α for some α ∈ [0, 1], then the
test is referred to as liberal or anti-conservative. For statistical tests on discrete sample spaces, exact
tests are usually impossible, due to the finite number of outcomes, which leads to discontinuities in
the cumulative distribution function of the p-values. In such cases, it is recommended to err on the
side of caution and prefer a more conservative test, as a conservative test fulfils our expectation of
controlling the type I error rate set a priori by α (Rugg, 2007). In order to determine whether our
developed statistical test yields valid p-values, we performed a number of simulations. Let K denote
the number of genotypes, Nsim denote the number of simulations for a given set of parameter values
f = (1, . . . , 1), p, m, n and λ. Unless otherwise stated, we have simulated each parameter set with
Nsim = 10 000 simulations.

S4.1 False positive rate for increasing λ

We first investigated the effect of the bottleneck parameter λ on the false positive rate. We drew the
intra-host transmitter population p composed of K = 2 genotypes from a Dirichlet distribution with
α = (1, 1)T , which corresponds to a uniform distribution on ∆1

R. It should be emphasised here that
the correctness of the statistical test should be independent of the background distribution used to
simulate intra-host viral populations. In our case, we opted for a Dirichlet distribution since it is
the archetypal distribution on ∆K−1

R (Blei et al., 2003). For each random p, we simulate X and Y
according to the graphical model in Figure S3.1-1 with λ ∈ {0.1, 0.5, 1, 10, 100, 10 000}. We calculate
the Monte Carlo based p-value using the equation (S3.2-XIV). Realisations of the simulations under
H0 are shown in Figure S4.1-1 for fixed n and m, and varying λ. For illustration purposes we have
also analysed the resultingX and Y using Fisher’s exact test, which is extremely anti-conservative
in this context, as it does not account for the population bottleneck. For values of λ ≤ 100, the
distribution of approximate p-values is valid, that is, its ECDF lies on or below the identity function.
For values of λ≫ 100 the distribution of approximate p-values starts to become anti-conservative, that
is, Pθ(p ≤ α) > α. This is due to the fact that for increasing λ, the bottleneck becomes weaker and at
some point the uncertainty of the nuisance parameter p dominates the additional variance introduced
by the Wright-Fisher bottleneck.

In order to gauge how strongly the conservativeness of the test influences the p-values, we analysed
the tail of the p-value distribution more closely. By only looking at the empirical cumulative distribution
function for a regime of significant p < 0.05 values, we could estimate by how much p-values are
larger than necessary on average. With a linear fit we found that p-values are approximately inflated by
a factor of 17.4 (Figure S4.1-2).
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Figure S4.1-1. Empirical cumulative distribution function (ECDF) for null p-values for varying
bottleneck sizes. We simulated from H0 for various values of λ ∈ {0.1, . . . , 10 000}, where we
fixed m and n = 10 000. The x-axis of each plot denotes the value of the p-value, while the y-axis
Fn(p) denotes the empirical value of the CDF for given p. The blue graph depicts the ECDF
of p-values of our test. Below λ = 100 our test is always correct, whereas for extremely large
values of λ the uncertainty in estimating p becomes the dominating factor and the test becomes
anti-conservative. Notice how for realistic values of λ Fisher’s exact test (red) tends to produce
extremely small (incorrect) p-values.
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Figure S4.1-2. Estimating the conservativeness of the test for small p-values. The empirical
cumulative distribution function (ECDF) for p-values smaller than 0.05 under H0 for various values
of λ = 0.5 is shown, where we fixed m and n = 10 000. The x-axis of each plot denotes the value
of the p-value, while the y-axis Fn(p) denotes the empirical value of the CDF for given p. The black
solid graph depicts p-values under an exact test (i.e., the identity function Fn(p) = p) and the blue
graph depicts the ECDF of p-values of our test. The dotted line represents the best linear fit in the
interval p < 0.05, with its slope estimated to be 1/17.4.

S4.2 False positive rate for increasing transmitter coverage m

We performed further simulations, again with K = 2 and fixing λ = 0.5, the value of the bottleneck
we expect in practice (subsection S3.3). We fixed n to 10 000 and varied m logarithmically from 10
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to 10 000. The results of this simulation are depicted in Figure S4.2-3 and highlight how a coverage
m > 100 does not affect the conservativeness of the test anymore.
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Figure S4.2-3. Empirical cumulative distribution function (ECDF) for null p-values for varying

transmitter read coverages. We simulated from H0 for various values of m ∈ {10, . . . , 10 000},
where we fixed λ = 0.5, n = 10 000. The x-axis of each plot denotes the value of the p-value, while
the y-axis Fn(p) denotes the empirical value of the CDF for given p. The blue graph depicts the
ECDF of p-values of our test.

S4.3 False positive rate for increasing number of genotypes K

The final assessment of our test’s false positive rate was conducted for increasing numbers of genotypes.
We scaled K from 2 to 10, while fixing m and n = 10 000 and λ = 0.5. With an increasing number of
genotypes the test becomes less and less conservative. This is due to combinatorial number of different
events that can occur, thereby decreasing the discreteness of the distribution of the test statistic.

0.0 0.4 0.8

0.
0

0.
4

0.
8

K = 2

p

F
n(

p)

0.0 0.4 0.8

0.
0

0.
4

0.
8

K = 3

p

F
n(

p)

0.0 0.4 0.8

0.
0

0.
4

0.
8

K = 5

p

F
n(

p)

0.0 0.4 0.8

0.
0

0.
4

0.
8

K = 10

p

F
n(

p)

Figure S4.3-4. Empirical cumulative distribution function (ECDF) for null p-values for varying
number of genotypes. We simulated from H0 for various values of K ∈ {2, . . . , 10}, where we
fixed λ = 0.5,m, n = 10 000. The x-axis of each plot denotes the value of the p-value, while the
y-axis Fn(p) denotes the empirical value of the CDF for given p. The blue graph depicts the ECDF
of p-values of our test.
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S5 Sensitivity of detecting selection

Sensitivity, power or the true positive rate of a test is defined as Pθ(p ≤ α | HA), where HA denotes the
alternative hypothesis, i.e., selection acts on the population as the fitness landscape of the genotypes
in the population is not constant. The sensitivity of the test will depend on a number of parameters:
the significance level α, the selective coefficient s, the size of the bottleneck λ, the composition of the
population p and the number of reads n and m. Given that α is fixed, we will not further investigate its
effect on the sensitivity of the test. We analyse the sensitivity of our test when one genotype is being
selected for and when one genotype is being selected against.

We simulated a population with selection acting at various strengths. To this end, we let the fitness
f1 of the first genotype vary on a logarithmic scale f1 ∈ [0.02, 50] and fix all other transmissibilities
fj = 1 for all j ∈ {2, . . . , K}. We also vary the population composition, where we varied the
frequency in the population of the first genotype p1 in the interval (0, 1) and set the value of all other
genotypes’ frequencies to pj = (1− p1) / (K − 1) for all j ∈ {2, . . . , K}. We have fixed m = 10 000
and λ = 0.5, in line with the average coverages we observed in the sequencing experiments and the
bottleneck we estimated.
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S5.1 Sensitivity for increasing recipient coverage n

We first assessed sensitivity of our test with increasing read coverage in the recipient. For this, we
fixed K = 2 and the transmitter coverage m = 10 000. We simulated data under different coverages
for n ∈ {100, 1000, 10 000}. The result of these simulations can be seen in Figure S5.1-1.
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Figure S5.1-1. Sensitivity plots of the selection model for different read coverages in the recipient.
The logit x-axis denotes the frequency of the first genotype p1, the logarithmic y-axis denotes fitness
f1 of the first genotype and the z-axis depicts the sensitivity P(p ≤ α | p1, f1). At f1 = 1 the null
hypothesisH0 holds and no selection acts. Notice the recurring phenomenon of the conservativeness
of the test. In the interval 0.14 ≤ p1 ≤ 0.86, selection is not detectable at all, given that in this
region, any fixation respectively extinction cannot generally yield p-values below α = 0.05. All
graphs are practically identical, i.e., sensitivity is not a function of n for the given range.

Sensitivity of our statistical test is not a function of the coverage in the recipient for n ≥ 100. This is
due to the population in the recipient generally being very homogeneous due to the strong bottleneck,
with practically no variation or low frequency genotypes. HIV-1 in acute infections first undergoes
clonal expansion and during this phase little diversity is present.
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S5.2 Sensitivity for increasing number of genotypes K

We have simulated the model as in the previous section for, but this time increased the number of
genotypes, starting at K = 2 going up to K = 10. We fixed n,m = 10 000. While the picture is very
similar, an increasing number of genotypes in the population to be tested does have a noticeable effect
on our ability to detect selection (Figure S5.2-2). Detecting selection for a single genotype (f1 > 1) is
unchanged between K = 2 and K = 10. On the other hand, detecting a single genotype being selected
against becomes easier with increasing number of genotypes. Notice how in the case of K = 10, we
now have an increased chance of detecting selection in the parameter range 0.29 < p ≤ 0.86. This is
explained by the fact, that in order to detect a single genotype being selected against, only one of the
other K − 1 genotypes has to fixate, whereas to detect a single genotype being selected for, this, and
only this genotype has to fixate. Due to the combinatorial advantage in the former, fixation of K − 1
other genotypes is probabilistically more likely and therefore easier to detect.
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Figure S5.2-2. Sensitivity plots of the selection model for different K number of genotypes in
the transmitter population. The logit x-axis denotes the frequency of the first genotype p1, the
logarithmic y-axis denotes fitness f1 of the first genotype and the z-axis depicts the sensitivity
P(p ≤ α | p1, f1). At f1 = 1 the null hypothesis H0 holds and no selection acts. In contrast to
Figure S5.1-1, selection against a single genotype becomes detectable in an additional part of the
parameter space.
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S5.3 Increasing sensitivity by pooling patients

As the test has been shown to be generally conservative, with no statistical power in certain parameter
ranges, we can combine independent p-values by using Fisher’s method. Let Nrep denote the
number of independent p-values, we then pool p-values by calculating −2

∑Nrep
i=1 ln(pi) which is

distributed according to a χ2 distribution with 2 · Nrep degrees of freedom. We simulated the
sensitivity of our test when combining different number of p-values into one overall p-value. For
this, we fixed K = 2, n,m = 10 000 and varied the number of pooled p-values in the range
Nrep ∈ {2, 3, 5, 10, 20, 30, 100, 1000, 10 000}. We find that there is a stark gain in sensitivity in
combining multiple patients (Figure S5.3-3), but only in certain parts of the parameter space. Even
when combining the 30 p-values, we gain no power to detect selection for a single genotype when this
genotype is abundant in the population. We consider transmission events as unusual when the majority
genotype disappears, which will practically not occur when the genotype being selected for is already
the majority genotype in the transmitter population.

Nrep = 2

0.01

0.02
0.06

0.14
0.29

0.5
0.71

0.86
0.94

0.98
0.99

0.02
0.04

0.1
0.21

0.46
1

2.2
4.8

10
23

50

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.9

1

fitness
p1

Sensitivity

Nrep = 3

0.01

0.02
0.06

0.14
0.29

0.5
0.71

0.86
0.94

0.98
0.99

0.02
0.04

0.1
0.21

0.46
1

2.2
4.8

10
23

50

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.9

1

fitness
p1

Sensitivity

Nrep = 5

0.01

0.02
0.06

0.14
0.29

0.5
0.71

0.86
0.94

0.98
0.99

0.02
0.04

0.1
0.21

0.46
1

2.2
4.8

10
23

50

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.9

1

fitness
p1

Sensitivity

Nrep = 10

0.01

0.02
0.06

0.14
0.29

0.5
0.71

0.86
0.94

0.98
0.99

0.02
0.04

0.1
0.21

0.46
1

2.2
4.8

10
23

50

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.9

1

fitness
p1

Sensitivity

Nrep = 20

0.01

0.02
0.06

0.14
0.29

0.5
0.71

0.86
0.94

0.98
0.99

0.02
0.04

0.1
0.21

0.46
1

2.2
4.8

10
23

50

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.9

1

fitness
p1

Sensitivity

Nrep = 30

0.01

0.02
0.06

0.14
0.29

0.5
0.71

0.86
0.94

0.98
0.99

0.02
0.04

0.1
0.21

0.46
1

2.2
4.8

10
23

50

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.9

1

fitness
p1

Sensitivity

Nrep = 100

0.01

0.02
0.06

0.14
0.29

0.5
0.71

0.86
0.94

0.98
0.99

0.02
0.04

0.1
0.21

0.46
1

2.2
4.8

10
23

50

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.9

1

fitness
p1

Sensitivity

Nrep = 1000

0.01

0.02
0.06

0.14
0.29

0.5
0.71

0.86
0.94

0.98
0.99

0.02
0.04

0.1
0.21

0.46
1

2.2
4.8

10
23

50

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.9

1

fitness
p1

Sensitivity

Nrep = 10000

0.01

0.02
0.06

0.14
0.29

0.5
0.71

0.86
0.94

0.98
0.99

0.02
0.04

0.1
0.21

0.46
1

2.2
4.8

10
23

50

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.9

1

fitness
p1

Sensitivity

Figure S5.3-3. Sensitivity plots of the selection model for when combining the p-values of
different Nrep number of pairs. The logit x-axis denotes the frequency of the first genotype p1,
the logarithmic y-axis denotes fitness f1 of the first genotype and the z-axis depicts the sensitivity
P(p ≤ α | p1, f1). At f1 = 1 the null hypothesis H0 holds and no selection acts. Statistical
sensitivity approaches 1.0 close to the boundaries of the parameter space, yet no gains in power are
apparent in other regions.
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S6 Heatmaps and number of genotypes across the HIV-1
genome

We tested 2773 amino acid loci of all complete reading frames of HIV-1, where at least six or more
tests could be performed across all 30 patients. We removed some regions of gp120, due in part to
hypervariable regions not aligning well that could lead to spurious calls. We omitted analysing rev and
exon 2 of tat as they are wholly contained within gp120.

Reading Frame Number of analysed (total) amino acids Genomic offsets

p17 132 790 – 1186
p24 231 1186 – 1879
p2-p7-p1-p6 137 1879 – 2290

Protease 99 2253 – 2550
RT 440 2550 – 3870
RNase 120 3870 – 4230
Integrase 288 4230 – 5094

vif 192 5041 – 5617

vpr 96
5559 – 5771

(frameshift insertion)

5772 – 5848
tat (exon 1) 71 5831 – 6044
vpu 82 6062 – 6308

gp120 334 (458)

6315 – 6615
(V1/V2 loop)

6813 – 7110
(V3 loop)

7218 – 7377
(V4 loop)

7479 – 7602
(V5 loop)

7635 – 7758
gp41 345 7758 – 8793

nef 206 8797 – 9415

Table S6-1. Reading frames with offsets with respect to HXB2. Note that some parts of reading
frames have been omitted, for various practical reasons. All genomic indices are half-open intervals,
meaning the first position is included, but not the last position.

A number of patients had failed amplicons during sample preparation, which manifest as large vertical
bars in the paired transmitter and recipient amino acids plots (Figure S6-2 – S6-28).
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Figure S6-1. Heatmaps of p-values for the p17 reading frame. Each column represents the test
outcomes for a transmitter-recipient pair and every row represents one amino acid locus out of 132
across all 30 recipient and transmitters.
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Figure S6-2. Heatmaps of individual amino acid counts for the p17 reading frame. The left
respectively right heatmap shows the number of amino acids in the transmitter, respectively in the
recipient at the analysed 132 positions across all 30 recipient and transmitters.
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Figure S6-3. Heatmaps of p-values for the p24 reading frame. Each column represents the test
outcomes for a transmitter-recipient pair and every row represents one amino acid locus out of 231
across all 30 recipient and transmitters.
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Figure S6-4. Heatmaps of individual amino acid counts for the p24 reading frame. The left
respectively right heatmap shows the number of amino acids in the transmitter, respectively in the
recipient at the analysed 231 positions across all 30 recipient and transmitters.
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Figure S6-5. Heatmaps of p-values for the p2-p7-p1-p6 reading frame. Each column represents
the test outcomes for a transmitter-recipient pair and every row represents one amino acid locus out
of 137 across all 30 recipient and transmitters.
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Figure S6-6. Heatmaps of individual amino acid counts for the p2-p7-p1-p6 reading frame. The
left respectively right heatmap shows the number of amino acids in the transmitter, respectively in
the recipient at the analysed 137 positions across all 30 recipient and transmitters.
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Figure S6-7. Heatmaps of p-values for the Prot reading frame. Each column represents the test
outcomes for a transmitter-recipient pair and every row represents one amino acid locus out of 99
across all 30 recipient and transmitters.
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Figure S6-8. Heatmaps of individual amino acid counts for the Prot reading frame. The left
respectively right heatmap shows the number of amino acids in the transmitter, respectively in the
recipient at the analysed 99 positions across all 30 recipient and transmitters.
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Figure S6-9. Heatmaps of p-values for the RT reading frame. Each column represents the test
outcomes for a transmitter-recipient pair and every row represents one amino acid locus out of 440
across all 30 recipient and transmitters.
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Figure S6-10. Heatmaps of individual amino acid counts for the RT reading frame. The left
respectively right heatmap shows the number of amino acids in the transmitter, respectively in the
recipient at the analysed 440 positions across all 30 recipient and transmitters.
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Figure S6-11. Heatmaps of p-values for the RNase reading frame. Each column represents the test
outcomes for a transmitter-recipient pair and every row represents one amino acid locus out of 120
across all 30 recipient and transmitters.
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Figure S6-12. Heatmaps of individual amino acid counts for the RNase reading frame. The left
respectively right heatmap shows the number of amino acids in the transmitter, respectively in the
recipient at the analysed 120 positions across all 30 recipient and transmitters.
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Figure S6-13. Heatmaps of p-values for the Int reading frame. Each column represents the test
outcomes for a transmitter-recipient pair and every row represents one amino acid locus out of 288
across all 30 recipient and transmitters.
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Figure S6-14. Heatmaps of individual amino acid counts for the Int reading frame. The left
respectively right heatmap shows the number of amino acids in the transmitter, respectively in the
recipient at the analysed 288 positions across all 30 recipient and transmitters.
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Figure S6-15. Heatmaps of p-values for the vif reading frame. Each column represents the test
outcomes for a transmitter-recipient pair and every row represents one amino acid locus out of 192
across all 30 recipient and transmitters.
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Figure S6-16. Heatmaps of individual amino acid counts for the vif reading frame. The left
respectively right heatmap shows the number of amino acids in the transmitter, respectively in the
recipient at the analysed 192 positions across all 30 recipient and transmitters.
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Figure S6-17. Heatmaps of p-values for the vpr reading frame. Each column represents the test
outcomes for a transmitter-recipient pair and every row represents one amino acid locus out of 96
across all 30 recipient and transmitters.

Seifert et al. 37 SI



1

48

96

 1  5 10 15 20 25 30
Pairs

A
m

in
o 

ac
id

Transmitter amino acids

0

1

2

3

4

5

1

48

96

 1  5 10 15 20 25 30
Pairs

Recipient amino acids

0

1

2

3

4

5

Figure S6-18. Heatmaps of individual amino acid counts for the vpr reading frame. The left
respectively right heatmap shows the number of amino acids in the transmitter, respectively in the
recipient at the analysed 96 positions across all 30 recipient and transmitters.
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Figure S6-19. Heatmaps of p-values for the tat reading frame. Each column represents the test
outcomes for a transmitter-recipient pair and every row represents one amino acid locus out of 71
across all 30 recipient and transmitters.
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Figure S6-20. Heatmaps of individual amino acid counts for the tat reading frame. The left
respectively right heatmap shows the number of amino acids in the transmitter, respectively in the
recipient at the analysed 71 positions across all 30 recipient and transmitters.
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Figure S6-21. Heatmaps of p-values for the vpu reading frame. Each column represents the test
outcomes for a transmitter-recipient pair and every row represents one amino acid locus out of 82
across all 30 recipient and transmitters.
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Figure S6-22. Heatmaps of individual amino acid counts for the vpu reading frame. The left
respectively right heatmap shows the number of amino acids in the transmitter, respectively in the
recipient at the analysed 82 positions across all 30 recipient and transmitters.
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Figure S6-23. Heatmaps of p-values for the gp120 reading frame. Each column represents the test
outcomes for a transmitter-recipient pair and every row represents one amino acid locus out of 334
across all 30 recipient and transmitters.
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Figure S6-24. Heatmaps of individual amino acid counts for the gp120 reading frame. The left
respectively right heatmap shows the number of amino acids in the transmitter, respectively in the
recipient at the analysed 334 positions across all 30 recipient and transmitters.
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Figure S6-25. Heatmaps of p-values for the gp41 reading frame. Each column represents the test
outcomes for a transmitter-recipient pair and every row represents one amino acid locus out of 345
across all 30 recipient and transmitters.
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Figure S6-26. Heatmaps of individual amino acid counts for the gp41 reading frame. The left
respectively right heatmap shows the number of amino acids in the transmitter, respectively in the
recipient at the analysed 345 positions across all 30 recipient and transmitters.
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Figure S6-27. Heatmaps of p-values for the nef reading frame. Each column represents the test
outcomes for a transmitter-recipient pair and every row represents one amino acid locus out of 206
across all 30 recipient and transmitters.

Seifert et al. 47 SI



1

103

206
 1  5 10 15 20 25 30

Pairs

A
m

in
o 

ac
id

Transmitter amino acids

0

1

2

3

4

5

1

103

206
 1  5 10 15 20 25 30

Pairs

Recipient amino acids

0

1

2

3

4

5

Figure S6-28. Heatmaps of individual amino acid counts for the nef reading frame. The left
respectively right heatmap shows the number of amino acids in the transmitter, respectively in the
recipient at the analysed 206 positions across all 30 recipient and transmitters.
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